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Abstract

Let X be a connected space and let K = H*(X;F,) where p is an
odd prime. We construct functors w and ¢ which approximate the co-
homology of the free loop space AX as follows: There are morphisms
w(K) — H*(AX;Fp) and £(K) — H%1 (AX;Fp). These are isomorphisms
when X is a product of Eilenberg-MacLane spaces of type K(Fp,n) for
n > 1.
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1 Introduction

The string cohomology of a topological space X with coefficients in a ring R is
defined as follows:

HY(X;R) = H%5 (AX;R) = H*(ES' x51 AX; R)

where AX denotes the free loop space of X. These cohomology groups together
with the cohomology of the free loop space itself H*(AX; R) plays a central role
in geometry and topology. It is however not know how to compute these in
general.

When R = Fy = Z/2, M. Bokstedt and I found computable functors of
H*(X;TF3) which approximate these cohomology groups [2]. The purpose of
this paper is to generalize these functors to the case R = F,, = Z/p where p
is any of the odd primes. Certain algebra generators in string cohomology are
more difficult to construct in the odd primary case. Hence method and strategy
differs from [2] at various places.

2 Notation

Fix an odd prime p. We use F,-coefficients everywhere unless otherwise is
specified. A denotes the mod p Steenrod algebra, U the category of unstable
A-modules and K the category of unstable A-algebras. We write g for the full
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subcategory of K with the connected unstable A-algebras as its objects. The
category of differential graded algebras is denoted DG A.
For K € K we define A : K — K as follows

|z|—1
)\m:{P z ¢ ,|z| odd

0 ,|z| even

Note that |A\z| = p(|z] — 1) + 1. Note also that X is a derivation over Frobenius
by the Cartan formula

Mzy) = M@)y? + 2P A(y).

In any graded Fp-algebra K we define 0 : K — F,, by o(z) = 1 for |z| odd
and o(z) = 0 for |z| even. We also define 6 : K — F,, by 6(z) =1 — o(x).

3 The approximation functor w
Let Y be a connected S'-space with action map 1 : S! x Y — Y. We have
n o~ =id where y(y) = (1,y). Recall that H*(S*) = A(v) where |v]| = 1.
Definition 3.1. Define the map d: H*(Y) — H*~1(Y) by
7" (y) =10y +v®dy.
Proposition 3.2. The map d satisfies the following:
dod=0, (1)
d(x +y) = dx + dy, (2)
d(wy) = d(@)y + (=1)"lzd(y), (3)
P'(dx) = d(P'z) fori >0, (4)
Bldx) = —d(Bx), (5)
d(Ar) = (dz), (6)
d(BAz) = 0. (7)

Proof. Similar to the p = 2 case proved in [2] Proposition 3.2. O

Definition 3.3. For K € Ky we define w(K) as the symmetric product of K
with the free graded commutative algebra on generators dx of degree || — 1 for
x € K divided by the ideal generated by the elements

d(z +vy) — dx — dy, (8)
d(zy) — d(z)y — (—=1)"zd(y), 9)
d(Azx) — (dz)?, (10)
d(BAz). (11)

There is a degree -1 differential d on w(K) defined by d(z) = dz for x € K as a
derivation over K. Hence (w(K),d) € DGA.

Proposition 3.4. For K € K we can define an A-action on w(K) by 0(x) = Oz
and 0(dz) = (=1)°d(0z) for x € K and 6 € A. In this way w becomes a functor
w: Ko — K. Note that the differential d on w(K) is graded A-linear.



Proof. See the appendix. O

Definition 3.5. For a connected space X we define the map
e:w(H*X) — H*(AX)
by x +— ev§(zr) and dz — dev§(z) where evy : AX — X; f — f(1).

Remark 3.6. The map e is a morphism in K as well as a morphism in DGA. It
is also natural in X. We view w(H*X) as an approximation to H*(AX) via the
morphism e.

Proposition 3.7. Let K,L € Kg andleti: K - K®@L andj:L— K®L be
the inclusions given by i(x) =z ® 1 and j(y) =1 ®y. The composite

w(i)®w(4)
_— 5

k:w(K)®w(l) WwKQL) QwK®L) —£— w(K®L),

where u denotes the product, is an isomorphism in both DGA and K. For
connected spaces X and 'Y with homology of finite type the following diagram

commutes.
wH*X)@w(HY) —— w(H*X @ H*Y)

e®el el
H*(AX)® H*(AY) —— H*(A(X xY))

Proof. The map « is a morphism in both DGA and K since it is a composite
of maps which are morphisms in both categories. For a € K and b € L we have
that kK(a®b) = a®b and k(dg(a®b)) = d(a®b). We verify that there is a well
defined FF)-algebra map +y in the opposite direction of £ with y(a ®b) =a®b
and y(d(a ® b)) = dg(a ® b) such that x is an isomorphism.

Elements of the form (8) are mapped to zero by definition. By direct com-
putation one sees that the elements of the form (9) are also mapped to zero.
Assuming that o(a) = 1 and o(b) = 0 we find

d(AMa®b)) — (d(a®b))? =d(Ma) @) —d(a)’ @ VP —
d(Xa) @ P —d(a)? @ b* =0,
d(B(Aa @b))) =d(BM(a) @ D7) —
d(BNa)) @ b =0
and if o(a) = o(b) the elements are already zero in w(K ® L). The above
description of k¥ on generators shows that the diagram commutes. |

4 The w approximation for certain Eilenberg-
MacLane spaces

For an Abelian group A and positive integer n we let B™ A denote the Eilenberg-
MacLane space K(A,n). In this section we prove the following result:

Theorem 4.1. The map e : w(H*B"F,) — H*(AB"F,) is an isomorphism in
K and DGA for each n > 1.



We first consider the case n > 2. The Whitehead theorem together with
the long exact sequence of homotopy groups and the five lemma proves the
following:

Proposition 4.2. Let G be a connected topological group. Then there is a
commutative diagram as follows

06 —2- ax0q 2 G
o N
oG —— AG 2 G
where m(f,x) = (z — f(2)-x). The map m is a weak homotopy equivalence.

Proposition 4.3. For n > 2 there is an isomorphism
m*: H*(AB"F,) — H*(B"F,) ® H*(B""'F,)

with the property m* o e(ty) = tn, ® 1 and m* o e(diy,) = ¢pl ® L—1 for some
nonzero constant c, € I,.

Proof. The space B"F, is a topological Abelian group since I, is an Abelian
group. Proposition 4.2 with G = B"F, gives that m* is an isomorphism and
that m* oev(in) = 1®ut, as stated. We have m*(devjjin) = ¢, 1 ®ty—1 for some
cn € Fp since 1 ® 1,1 is the only class in degree n — 1 of the right hand side.
Let h denote the composite

h:S'x B"F, x B""'F, —"— S' x AB"F, —"— AB"F, —*— B"F,
where 7 is the action map. Then h*(1,) = 1®1, @ 14+ v @1 @ tp—1. If ¢, =0
then evg o n is homotopic to the composite

k:S'x AB"F, 2 AB"F, —°- B"F,

since B"F,, classifies mod p cohomology in degree n. But we have evgon(z, f) =
f(z) so its adjoint is the identity on AB™F,. The adjoint of &k is the map
AB"F, — AB"F, which sends a loop f to the constant loop with value f(1).
The maps k and evy o cannot be homotopic since their adjoints are not. U

Proposition 4.4. The map e : w(H*B"F,) — H*(AB"F,) is an isomorphism
for each n > 2.

Proof. Since the cohomology of the spaces B™IF, are free objects in K we can
define a morphism in I as follows:

f:H*(B"F,) ® H*(B"'F,) — w(H*B"F,) , 1, ®@1>4,
s 1@y e tdiy,.

We have m* oeo f = id and f o m™ o e = id since these equalities hold on
generators. |

The case n = 1 is interesting since here ABF,, splits in p components. We
will use the following result to see that w(H*BF,) split accordingly.



Lemma 4.5. There is an isomorphism of rings as follows
an[x}/(xpix)*)(]Fp)p ; 1"_}(07172771)71)

where I, [x] is the polynomial ring in one variable x of degree zero and (IF,)P is
the p-fold Cartesian product of F, by itself.

Proof. Use the factorization #¥ —x = ][, cp (¢ —n) and the Chinese remainder
theorem. g

Remark 4.6. Let e, = a=1(0,...,0,1,0,...,0) with the 1 on the nth place for
n € F,,. Clearly epe,, =0 for n # m, e2 =e, and > e, = 1. Also xe, = ne,.
Finding eigenvectors for zf(x) = nf(x) and normalizing one gets

ep=1—2P1!

Definition 4.7. For n € [}, define the following action map
fo ! ZxF,—TF, ; (r][s])— [nr+s].

We let BF,(n) denote BF, equipped with S'-action Bf, and write d,, for the
corresponding action differential on H*BF,(n).

Proposition 4.8. We have H*BF,(n) = A(v,) @ F,[Bv,,] where |v,| = 1. The
differential d,, on this algebra is given by d,v, = n and d,Bv, = 0 for each
necl,.

Proof. We must show that (Bf,)*(vn) = 1 ® v, +nv ® 1. This follows from
Hy(Bfn) = m(Bfn) = fn by taking duals. Since Av,, = i, the class Bu, is
mapped to zero. O

Proposition 4.9. The map e : w(H*BF,) — H*(ABF,) is an isomorphism.

Proof. From [1] Lemma 7.11 we have ABF, ~ U,cr, BF,. Define maps j, :
BF,(n) — ABF, by z — (2 — Bf,(z,2)) for n € F,. These are S'-maps.
Let (ABF,)(n) denote the component of ABF, containing the image of j,.
Then the restriction j,| : BF,(n) — (ABF,)(n) is an S'-map and a homotopy
equivalence. Especially the induced in cohomology (j,|)* is an isomorphism
of differential graded algebras. By Proposition 4.8 we see that (ABF,)(n) #
(ABF,)(m) for n # m such that Uj, : UBF,(n) — ABF, is an S'-map and a
homotopy equivalence. Especially (Ujn)* = (jg,-..,J,—1) is an isomorphism.
So it suffices to show that g = (jg,.-.,j;_1) © € is an isomorphism. We have

(Jn 0 €)(x) = jp, 0 evg(x) = (evo © jn)" () = (12)
(Jn 0 €)(dx) = jp(devy(x)) = dn 0 jy 0 evg(2) = dn (13)

for x € H* BF, which describes the map g on generators. By definition we have
W(H*BF,) = M) ® Fy[Bu1] @ (Fyldua]/((dua)? — dur)).

From Lemma 4.5 and (13) we see that ¢ is an isomorphism in degree zero. By
(12) we conclude that it is an isomorphism in all degrees. O



5 Steenrod diagonal elements

In this and the following four sections we describe algebra related to certain
classes in string cohomology. The motivation comes later in Theorem 11.3. In
the following K denotes an unstable A-algebra. The polynomial algebra F,[u]
where |u| = 2 is an object in K by the isomorphism F,[u] & H*(BS!).

Definition 5.1. For z € K and € = 0,1 we define St.(z) € F,[u] ® K by

Ste(x) = Uié&(m) Z(fupfl)“x‘/m*i ® ﬁepzx

i>0

Note that the terms where the total exponent of u is negative has 3¢P'x = 0.
Let R(K) C Fplu] ® K be the sub-F,-algebra generated by u ® 1 and St(x) for
allz € K and e =0, 1.

Theorem 5.2. For each 6 € A one has 6R(K) C R(K). Thus R is a functor
R: K — K. The explicit formulas are as follows where n = [|x|/2] and e =0, 1:

Pist.(x) = Z <(p —1)(n—t)+ EU(I)>u(p1)(ipt)St€(Pt$)

1 —pt

t

oz p—1)(n—t)—14+o(x D) (i—pt)— Doz

(1) <>Z<( >(i_pt)_1 ( )>u<p D(i-pt) -1+ 2P0 (0) 40 (3P'),
t

BStc(z) =(1 — e)u®® Sty (z).

Proof. The formula for the Bockstein operation follows directly by the definition
of St.(x). We use results from [3] to prove the other formula. By [8] we have
that Fp[u,u™1] is an A-algebra with 3 = 0 and

PW’:(]) =) ez i>0.
1

Here the following extended definition of binomial coeflicients is used where

re€Rand k € Z.
r(r—1)...(r—k+1) ,k >0

i L k
k)~ k=0
0

k<0
Let A = A(a) @ Fplb,b~1] with |a| = 2p — 3, |b] = 2p — 2 be the A-algebra
introduced in [3] (2.6). That is fa = b and

Pi(H) = (~1) ((P - 1)3) bt

7

Pi(ab™!) = (1) <(p ~ i - 1>abi+ﬂ'—1.

7

Note that we have changed the names of the generators. In [3] they were named
u and v instead of a and b. We define an additive transfer map as follows:

A= Flu,u™] 5 0 5 abl e (—uP e

Note that |7| = —1. A direct verification shows that 7 is A-linear.



A functor R4 from the category of graded .A-modules to itself is constructed
in [3]. In the case of an unstable A-algebra K it comes with an .A-linear map
f:RLK — YA ® K defined by [3] (3.1), (3.2). The composite

RyK —L o oAe K 2L SF juut) @ K

is given by
st @2 — —s Z(—up_l)k_ju_1 ® B3PI,
J
sabt ' @z SZ(—up_l)k_ju_1 ® Pig.
J

Especially sb” ® 2 +— —su’®) Sty (x) and sab" ' ®@ x — su~'Sto(x) where n =
[|z|/2]. The formulas [3] (3.4), (3.5) for the A-action on R M gives the following
formulas for the A-action on u(®) St (x) and u="'Sty(x):

Pi(ua(m)Stl(x)) _ Z <(p - 1)(” - t)>u(p1)(z‘pt)a(m)Stl (Ptl')

- 1 —pt

—1)(n—t)—1 L) (i—pt—o () —
Z(l)a<w><@ i_)<pt_1) )u@ Dli-pt=o(@)=1 g4 (3P'z),
t

Pi(u_lSto(w)) _ Z((p - 12<n;tt) - 1)U(P—l)(i—pt)—lstO(th)_

This proves the result directly for o(z) = 0 and ¢ = 1. By the Cartan
formula applied to uu~1St.(x) we have that P'St.(z) = uP(u~1St.(x)) +
uPP=1(u=1St.(z)). By combining this with the formulas above we get the
result in the other cases. O

6 The functor ¢

In this section we describe the functor which approximates string cohomology.
We also define maps which relate this functor to the functors R and w.

Definition 6.1. For K € Ky we define ¢(K) as the graded commutative F,-
algebra generated by the classes

¢(x) of degree p|z| — o(x)(p — 1),

§(z) of degree |z| — 1,

q(z) of degree plz| — 1 —o(x)(p — 3)

for all homogeneous z € K and a class u of degree 2; modulo the ideal generated
by
—

¢z +y) = ¢(z) = $ly) +o(2) Y (~1)'6(z)'6(y)P "> "6 (xy), (14)
=0

1=

6(x +y) —d(x) —d(y), (15)

q(z +y) — q(x) — qly) + 6(z) Z(*l)i—ﬁ(xiy”_i), (16)



(—=1)7@7)5(a)5(be) + (—1)7P7N5(b)5(ca) + (—1)7 7 )s(e)s(ab),  (17)
¢(ab) — (—uP~ )77 g(a)g(b), (18)
q(ab) — ( uP~ 17O (47O g(a)(b) + (—u)” W g(a)q(b)), (19)
q(z)? —u"~lq(A\z) — ¢(BA), (20)
8(a)p(b) — 6(abP) — 6(arb) + 5(ab)d(b)P~1, (21)
5(a)q(b) — 6(abP~1)5(b) — 6(aBAb), (22)
0(x)u, (23)
q(BAz), (24)
5(BAx) (25)

where a,b, ¢, x,y € K and |z| = |y|. Tt is understood that 6(1) = ¢(1) = 0.
Remark 6.2. We have some immediate consequences of these relations:
e By (14)-(16) we have ¢(0) = ¢(0) =6(0) =0
e By (18), (19) and (21) the algebra ¢(K) is unital with unit ¢(1).
e By (18) and (19) we have q(a™) = n¢(a)"'q(a) such that q(a?) = 0.
e By (22) we have §(b?) = 0 and also the important relation §(A\b) = §(b)?.

Lemma 6.3. For any K € K the following relations hold in w(K):

. (—1)”1%65(%1'9’”) = (@ +y)P @ +y) -2 de —yP " dy,  (26)
Z(*l)jﬂ(dﬂﬂ)j (dy)P > d(zy) =

=0

(d(x 4+ )Pz +y) — (dz)P o — (dy)*y. (27)

Here |z| = |y| is assumed to be even in (26) and odd in (27).

Proof. We verify (26) and omit the proof of (27) which is similar. Since d is a
derivation we have

p—1 p—1
z+1 p z) — Z(—l)i+1(l‘i_1yp_1d$ _ ,Tiyp_i_ldy).
z:l =1

By splitting the sum in two at the minus sign and substituting 7 = ¢ — 1 in the
first of the resulting sums we see that the above equals the following:

p—2 p—1
Z(—l)jxjyp_j_ldx + Z(_l)ixiyp—i—ldy _
Jj=0 i=1

p—

Z(—l)txtyp_t_l(dx +dy) — 2Pt dr — yP " dy.
t=0



For 0 <t < p—1 we have that t! is invertible in F, and also

<pt 1)u =(@-1P-2)...(p—1) = (-1)" mod p.

Thus we have (p;l) = (—1)*. Substituting this in the above and using the

binomial formula the result follows. O

Proposition 6.4. For any K € Kq there is a natural homomorphism of IFp-
algebras which we call the de Rham map

DR :{(K) — w(K); ¢(x) — 2P + Az — x(dz)P ™1,
q(z) — 2P~ tdx + B,
0(z) — dx, uw—0.

and we have Im(DR) C ker(d : w(K) — w(K)). There is also a natural homo-
morphism of Fp-algebras which we call the Steenrod map

St l(K) - Fylul @ K;  ¢(x) — Sto(z), q(z) — Sti(z),
5(x)—0, u—u®l.

The image of this map is Im(St) = R(K). There is a commutative diagram of

Fy-algebras as follows.

UE) —2 5 Fu®K

DRl Pll
w(K) —2— K

where the algebra maps p1 and pa are given by pi(u) = 0 and pa(dx) = 0,
p2(x) =z for each x € K.

Proof. We check that the formulas for DR maps the relations (14)-(25) to zero.
Formula (27) and the additivity of  — P shows that (14) is mapped to zero.
It is trivial that (15) is mapped to zero. By (26) and the additivity of 2 — Az
it follows that (16) is mapped to zero.

Taking the derivative of products and permuting factors we find the following
equations:

d(a)d(be) = d(a)d(b)c + (—1)°Pd(a)bd(c),
(1)o@ @O+ gd(b)d(c) 4 (—1)7 D+ @)@+ g(q)d(b)e,
)8 @@+ ®)g(a)bd(c) 4 (—1)7( @D+ @+50) gq(c)d(b).

= (-1
After some reductions (17) follows from these.

One easily checks that (18) and (19) are mapped to zero in each of the cases
o(a) =0(b) =0, 0(a) =0c(b) =1 and o(a) =46(b) = 1. It also follows by small
direct computations that (20)-(25) are mapped to zero.

We check that (14)-(25) are mapped to zero by the formulas defining St.

Since §(x) is mapped to zero this is trivial for all elements except (18), (19),
(20) and (24).



1]

By the Cartan formula and [@] = [l%l] + [5] + o(a)o(b) one verifies that

Sto(ab) = (—up_l)"(“)“(b)Sto(a)Sto(b),
Sty (ab) = (—uP~1)7 (@O (47§t (a)Sto () + (—u)7 @ Sto(a)Sty (b))

such that (18) and (19) are mapped to zero. Lemma 13.1 implies that (20) and
(24) are mapped to zero. The diagram commutes by direct verification. O

7 The de Rham map and cohomology of w(K)

In this section K denotes a connected unstable A-algebra. The de Rham map
gives a map from ¢(K)/(u) to the cycles in w(K). We give an important criterion
which ensures that this map is an isomorphism. The material corresponds to
section 8 in [2].
Definition 7.1. Let I5 C ¢(K) denote the ideal I5 = (6(x)|z € K).
Proposition 7.2. There is an Fp-linear map as follows

U:w(K)—UK) ; apday...da, — 0(ap)d(ar)...o(an)
where ag, . ..,a, € K. Its image is the ideal Im(¥) = I5.

Proof. We must show that ¥ is well defined. The relations arising from (8), (9)
and (11) are respected since we have the same relations in ¢(K) with d replaced
by 0. We must verify that the following relation is respected:

apday . ..da;—1d(a;a;1)daits . .. day, =
(71)(k+&(ai))a(ai+1)aoai+1da1 ...da;da;ys ... day
+(—1)(k+1)”(“i)a0aida1 co.da;_1daiyy .. . day
where k = |day . ..da;—1]. This follows if the relation
zd(yz) = (-1)°W7PDzzd(y) + (~1)7V zyd(2)

is respected. By relation (17) one sees that it is after some work with the
signs. O

Definition 7.3. Define the F,-algebra @(K) as the quotient of ¢(K) by the
ideal I5 + (u). Since DR(I5) C dw(K) we may define an Fp-algebra map ® by
the following diagram where P denotes the canonical projection:

W(K)  —— w(K)/du(K)
Since d o DR = 0 we have in fact defined a morphism @ : &(K) — H*(w(K)).
Remark 7.4. We have a filtration of (K) by ideals as follows:

UK)2 (w) 2 () 22 (u) 2...

and (u?)/(u't!) = vw'@(K) for i > 1.

10



Proposition 7.5. The composite W od : w(K) — ((K) is trivial, so we can
define U as a map on w(K)/dw(K). This allows us to consider the composite
PUod:o(K)— UK). This composite is zero.

Proof. By definition of ¥ we have ¥ od = 0. The following rules hold for b € K
and z = agda;y ...da, € O(K):
U((p(h)2) = (~1)?Wlpb)W(z) , W(D(q(b))2) = (=1)1"g(b)W(2).

In fact the first rule follows from (21) and the second from (22) as one sees
by direct verification. By these rules and the observation ¥(1) = 0 the result
follows. g

Remark 7.6. We can collect the information we have gathered so far in a com-
mutative diagram:

H(K) —2— w(K)/dw(K) —— (K)/(v) ——  &(K)

I oz °|
wEK) e w(K) —— w(K)/dw(K)
where the composite ¥ o ® vanishes and ker(P) = Im(¥).

Theorem 7.7. Assume that the map ® : ©(K) — H*(w(K)) is an isomor-
phism. Then so is

DR : U(K)/(u) — ker(d : w(K) — w(K)).

Proof. The diagram is formally the same as the one above Theorem 8.5 of [2]. So
the same diagram chase as in the proof of Theorem 8.5 in [2] gives the result. [

Proposition 7.8. For any pair K,L € Ky the following composite is an iso-
morphism

Rro(K)eaL) 222V, kel esK L) —*— o(K® L)

wherei : K > K®L;i(a) =a®1land j : L - KQ®L; j(b) =1®b are the
canonical inclusions and p denotes the product homomorphism. The following
diagram commutes.

SKeL) T HYw(K ® L))
O(K)®@o(L) 2292, g (w(K)) ® H* (w(L))

Proof. We verify that & is an isomorphism. For a € K and b € L we have that
a®b=(a®1)(1®b) giving the following relations in O(K ® L):

¢p(a®b) = (1 —o(a)o(b))p(a®1)p(1 @ b),
q(a®@b) = d(b)gla® 1)p(1 ®b) + 5 (a)dp(a @ 1)q(1©b).

11



Since ¢(a) ® 1 - ¢la® 1), g(a) @ 1 — gla® 1), 1@ o(b) — 6(1 © b) and
1® q(b) — ¢q(1 ® b) we see that & is surjective. One checks that the following
gives a well defined map ¥ in the opposite direction of &:

pla®b) = (1 —o(a)a(b))p(a) @ (b),
q(a ®b) — 6(b)g(a) ® (b) + 6 (a)d(a) @ q(b)-

By checking on generators we see that 7 o kK = id so k is injective as well and
hence an isomorphism.

The isomorphisms x and £ have corresponding factorizations. The diagram
splits in two commuting squares accordingly. O

8 Frobenius algebras

Definition 8.1. A Frobenius algebra is a graded commutative F-algebra K
equipped with two IF,-linear maps 3, A : K — K satisfying the following condi-
tions:

e K is connected (K? =0 for ¢ < 0 and K° = F,) and finite dimensional in
each degree.

o [8l=1,B00=0and f(zy) = Bz)y + (~1)*1zb(y) for all 2,y € K.

o |[\z| =p(Jz| — 1) + 1, Az = 0 when |z| is even, Az =  when |z| = 1 and
AMzy) = AMx)y? + 2P A(y) for all 2,y € K.

A morphism of Frobenius algebras f : (K,3,\) — (K’,,\) is an Fp-algebra
map [ : K — K’ of degree zero such that foA =X o fand foB=/0"of. The
category of Frobenius algebras is denoted F.

Remark 8.2. There is a forgetful functor Iy — F.

Definition 8.3. Let vF, denote the category of positively graded F,-vector
spaces which are finite dimensional in each degree. Let I : F — v[F, denote
the functor which takes a Frobenius algebra to its augmentation ideal (that is
I(K) = K*>°). Define the functor Sz : vF, — F as the left adjoint of I. For
V € vF, we call Sz(V) the free Frobenius algebra on V.

Remark 8.4. We have Sg(V @ W) = Sz(V)® Sz(W). Furthermore there is an
explicit description as follows

S]:(V) = SCA (V D ﬁV l&>] @ BV)\i(ﬂveven e VOdd’*>1))
i>1,0€{0,1}

where Sc 4 denotes the free graded commutative algebra functor.

Recall that a sequence of integers I = (ey,s1,€2,82,..., €k, Sk, €x+1) With
s; > 0 and ¢; € {0,1} is called admissible if s; > ps;y1 + €;41 and s > 1 or if
k =0 when I = (¢). The degree of I is defined as |I| = > ¢; + > 2sj(p—1)
and the excess is defined recursively by e((e, s),J) = 2s + ¢ — |J|. We use the
following notation P! = 3¢ P13z Ps2 3% Psk 3k+1,
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Lemma 8.5. Ifn > 2 then H*B"F, is the free Frobenius algebra on the vector
space generated by the following set:

{PL1,|I is admissible ,e(I) < n —2,e; = 0}.

Furthermore H*BF, is the free Frobenius algebra on the vector space generated
by the class (1.

Proof. The case n =1 is trivial. Assume that n > 2 and define the set
A(n) = {I|I is admisseble ,e(I) <n —1,|I| + n is odd }.

Remark that if I € A(n) then (0, (|I| +n —1)/2,I) € A(n). To see this write
I € A(n) as I = (¢,8,I'). Then e(I) = 2s+¢— |I'| <n —1 or equivalently
2sp+ 2¢e — |I| < n— 1 such that the sequence (0, (|I|+n—1)/2,I) is admissible.
Its excess is n — 1 and its degree plus n is odd since p — 1 is even.

By Cartan’s computation (a special case of [5], Theorem 10.3) we have that
H*B"F, is the free graded commutative algebra on the set

B = {P’4,|J is admissible ,e(J) < n or (e(J) =n and ¢; = 1)}.

Assume that P’s, belongs to the set in the statement of the lemma. Then
P!y, and P!, belongs to B. By the remark we see that if |I| +n is even then
BN BPLL, € B and if |I| + n is odd then 3\ P11, € B for e = 0,1 and i > 1.

Conversely, assume that P7.,, € B. If e(J) <n—2ore(J) =n—1 and
€1 = 1 it is clearly one of the generators described in the lemma. It suffices to
handle the case e(J) =n—1,e; = 0 since the case e(J) = n,e; = 1 then follows.
Write J as J = (0,s,J’) where e(J) =2s—|J|'=n—1. Then 2s =n+|J'| -1
such that P7.,, = AP7"1,, and e(J) < e(J’). We can continue this process until
the next € equals one or the excess drops below n — 1. O

Theorem 8.6. The map ® : ¥(K) — H*(w(K)) is an isomorphism when K is
a free Frobenius algebra.

Proof. 1t suffices to show this when K is a free Frobenius algebra on a one
dimensional vector space. Let v be the generator of this vector space. We first
check the case |v| = 1 where K = A(v) @ F,[Bv]. The idempotents from Remark
4.6 (with = dv) gives the following splitting:

w(K) = @ eiw(K).

i€F,,

For each i we have de; = 0 and (dv)e; = ie;. Also Av = v such that dfv = 0.
From this we see that d(v¢(Bv)"e;) = €i(Bv)"e;. It follows that H*(e;w(K)) =0
for i # 0 and H*(eqw(K)) = K. So H*(w(K)) = K and since ®(¢(v)) = veg
and ®(q(v)) = v we see that @ is surjective. The relations ¢(SBv) = ¢(v)? and
q(Bv) = 0 shows that ¢(v) and g(v) generate w(K) so ® is also injective.

Assume that |v| is even. In the following we write [—] for the functor which
takes a set to the vector space it generates. We have

K= SCA[U,BU,)\iﬁU,ﬁ)\iﬁvH > 1]

13



and we find that w(K) = K ® Sca[dv,dBv]. We change basis such that the
differential becomes easier to describe:

w(K) =Scalv,dv] ® Scalfv,dfv] ®
ScalNfv — (aX' ™! fo)P "IN B, BABuli > 1.

By the Kiinneth formula we find that H*(w(K)) equals
Sca[v?P, vP 7 dv] @ Sca[NBv — (AN Bu)PTINT By, BN Buli > 1].

The algebra ©(K) is generated by the classes ¢(v), ¢p(A*Bv), q(v) and g(\!Bv)
where ¢ > 0. We see that ® maps these generators to the free generators for the
cohomology of w(K). Hence ® is an isomorphism. The case where |v]| is odd is
similar. (|

9 A pullback description of the functor /

Proposition 9.1. Let (n;) be a sequence of positive integers such that the set
{iln; = N} is finite for each N. In particular (n;) may be a finite sequence. If
we let K = H*(][ B"F,) then ker(St) = I;.

Proof. We must show that St : ¢(K)/Is — Fplu] ® K is injective. The algebra
0(K)/Is has generators ¢(x), q(z) for € K together with u and the relations
are that ¢ and ¢ are additive and that (18), (19), (20) and (24) equals zero.

For a free Frobenius algebra K = Sz(V) we have listed a set of algebra
generators for £(K)/Is below and we have written how they are mapped by St
modulo elements in the ideal (u?~!). Here z € V1, v € V°4d*>1 and w € Vever
runs through a basis for V' and ¢ > 0:

¢(2) — 1® 2, 4(2) = 1® Bz,
$(Bv) — 1® (fv)?, a(Bv) — —ur=2 @ BPIY=-D/2g,,
‘b(}ﬁb) —1® )\iJrlv7 q()\iv) —1® ﬁ)\i+1v,
d(w) — 1@ wP, g(w) > —uP=2 @ gPIWI/2 1y,
PN Bw) 1@ AN Bw, g\ Bw) — 1 @ AXH B,
U u.

We claim that these generators are mapped to algebraically independent
elements in Fplu] ® K when K is the cohomology of a product of Eilenberg-
MacLane spaces as stated. It suffices to show this in the case of one single
Eilenberg-MacLane space.

The claim is trivial for K = H*BF,. Let K = H*B"F, where n > 2. We
can then cancel the first line in the list above. By Lemma 8.5 we have that K
is the free Frobenius algebra on the vector space V with basis P, where I is
admissible, e(I) <n — 2 and €; = 0.

If |I| + n is odd we must look closer at gPUI+n=1/23pl, = Write T
as I = (0,s,I'). We have e(I) = 2s — |I'| < n — 2 which implies that
0,(JI] +n —1)/2,1,s,I') is admissible. Its excess equals n — 2 and we see
that PUTI+7=1/23PT, " is a basis element in Vve".
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If |I| + n is even we must look at SP(11+7=2)/2pI, = As in the odd case we
see that PUTI+7=2)/2pl, is a basis element in V¢*". However there is no 3
between the first two P-operations from the left.

By the above list of the lowest terms and the description of K as a free
Frobenius algebra we now see that the generators are mapped to algebraically
independent elements. Especially they are free generators. O

Lemma 9.2. Let ay,...,a, € K be elements of odd degree and define the fol-
lowing element in Is:

—

P
Alay,...,ap) = > d(ara;)d(az) ... 0(ai) ... 5(ap).

i=2

where the hat means that the factor is left out. Then for any permutation T € 3,
one has A(ay,...,ap) = A(aT(l), ooy r(py). Further the element is mapped as

follows by the de Rham map:
p —
DR(A(a1,...,ap)) = Zaidal ...dag ... dap.
i=1

Proof. We first show the invariance under permutation. Since the degree of
d(a;) is even it suffices to show that A(a1,as,...,ap) = A(as,...,ap,a1). We
prove the following more general statement for n > 3:

n
—

D d(arai)d(as) .. 6(as) . 8(an) =
25(@%)6(@1)5(@3) e (@ . 0(an) — (n —1)d(aza1)d(az) ... d(an).
j=3

The proof is by induction on n. For n = 3 we have

6(a1a2)(5(a3) + (5(@1&3)(5(&2) = (5(@1@2)6(&3) — (5(@3@1)6(&2)
= 2(5(a1a2)(5(a3) + (5(@2@3)6(&1)
= 725(@2&1)5(@3) + 5(&2&3)5(@1)

where we used (17) at the second equality sign. Assume that the formula holds
for n — 1. Then we have

> dara)d(az) ... 3(as) ... 8(an) =

(i 6(ara;)d(az)...6(a;)...0(an—1))0(an) + d(aran)d(az) ... 0(an—1) =

—

(i 6(aza;)é(ar)d(as)...8(a;)...0(an—1))d(an)
j=3

— (n—2)d(azar)d(as) ...8(an—-1)0(an) + d(aran)d(az)...5(an-1).

We have that d(aia,)d(az) + d(aza1)d(an) = d(azan)d(a1) by relation (17) such
that the sum of the last two terms above equals

—(n—1)d(aza1)d(as)...d(an) + d(azan)dé(ar)...o(an-1)
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so we recover the formula for n.
We use that d(a1a;) = a;dar — ai1da; to compute the image under the de
Rham map:

d(ara;)das . . .d/c;i ... day

-

N
||
N

DR(A(a1,...,ap)) =

aidal...gc;i...dapf(p—l)aldag...dap

I
.M"S

||
N

K2

which modulo p gives the stated result. O

Definition 9.3. For any non negative integer n we let B(n) denote the follow-
ing set:

B(n) ={(b1,...,0p) €ZPIVi: 3; > 0,61+ -+ Bp =n,3i,j : B; # B}

The cyclic group on p elements C), act on B(n) by cyclic permutation of coor-
dinates. For x € K we define the following elements in Is:

D2 (x) (2) > AP (2), PP (x),..., PP (x)),

(2) Z(s (PP (x)PP2(z) ... PPr(x))
where both sums are taken over 8 € B(n)/C)p. Note that Do(x) is well defined
by Lemma 9.2
Lemma 9.4. For any x € K the following formulas hold in w(K):

P’ o DR(¢(x)) = DR(¢(P"?x) + Dj()), (28)

P'o DR(q(x)) = DR(q(P"/?x) + Di(x)) (29)
where by convention P* = 0 when t is a rational number which is not a non
negative integer.

Proof. We first prove (28). Recall that DR(¢(z)) = 2P + Az — z(dz)P~t. We
have P‘Az = AP"/Pz by Lemma 13.1 and also P*(z?) = (P"/Px)P so it suffices
to prove the following for |z| odd:

Pi(x(dz)P~) = (P/Px)(dPYPx)P~! — DR(D}(x)).
By the Cartan formula we have
Pi(a(de)™") =Y P (x)dPP(z)...dP% (x)

where we sum over the tuples (51, ..., 8p) with > 3; = i. The cyclic group C),
acts on the set of such tuples and an orbit has length 1 or p. Arranging the
terms according to this the result follows by the definition of D{(x) and Lemma
9.2.

For the proof of (29) recall that DR(q(z)) = xP~'dx + B\z. We have
PY(BAx) = BA(P/Px) 4 (BPU~D/Pg)P by Lemma 13.1 so when |z is odd we
are done. For |z| even we must show that

Pi(zP~Yda) = (PYP2)P~ dPYPx + DR(Di(x)).

This follows by the Cartan formula and a similar argument on orbits as the
above. O
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Theorem 9.5. For any K € Kq there is an A-module structure on {(K) such
that £ becomes a functor £ : Ko — K. The explicit formulas for the action are
as follows where x € K, n = [|z|/2] and i > 0. Firstly, the action on ¢(zx) is
given by:

P'¢(z) Z( i pt ”)u@”“mw(szL
Bo(z) =u"(g(e) - 6(x)"~*5(xBx)).

Secondly, the action on q(x) is given by:

qu(x) + <( n - t + U(x))u(pl)(ipt)q(Pt:C)

1 —pt

ol —n—-t)—1+o0 ) (ipt)— Vol
1) ()Z( z'pt)l (@ ))u(p D@=pt)=1+2=p)o(@) 45ty
t

By(z) = — (2"~ ).
Thirdly, the actions on 6(x) and u are as follows:
Pi§(z) = §(P'z), p6(x) = —6(Bx), Plu=uP, Bu=0.

The maps DR and St becomes A-linear such that we have a commutative dia-

gram in K:

0K) —2 R(K)

DRl pll

ker(d) —2— K
If K = H*([] B™F,) where (n;) is a (possible finite) sequence of positive inte-
gers satisfying that the set {iln; = N} is finite for each N, then the diagram is
a pullback square.

Proof. We first prove that we have a pullback when K is a product of Eilenberg-
MacLane spaces as stated. By Proposition 7.8 and Theorem 8.6 the map ® is an
isomorphism. So by Theorem 7.7 the kernel of DR is the ideal (u) C ¢(K). The
kernel of p; is the ideal (u®1) C R(K) and it suffices to show that the restriction
of the Steenrod map to these kernels St| : (u) — (v ® 1) is an isomorphism. It
is surjective since St is surjective and St(u) = v ® 1. By Proposition 9.1 we
have ker(St) = I5 such that ker(St|) = (u) N Is which is trivial because of the
relation §(x)u = 0 in £(K). Hence St| is also injective.

In the Eilenberg-MacLane case the pullback defines an A-module structure
on ¢(K). By Theorem 5.2 and Lemma 9.4 we see that the stated formulas
describe this action. A standard argument using the fact that B"F, classifies
degree n cohomology together with naturality takes care of the statements for
general K € K. O

10 Homotopy orbits of S'-spaces

In this section we list some results on homotopy orbits of S'-spaces. They
are all similar to results for p = 2 considered in [2] and we often refer to the
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proofs given there. In the entire section Y denotes an S'-space. We write C,,
for the cyclic group of order n. We let u of degree |u| = 2 and v of degree
|u]| = 1 denote algebra generators as follows: H*S' = A(v), H*BS' = F,[u]
and H*BCpn = A(v) @ Fplu].

Proposition 10.1. The fibration Y — ES! xg1 Y — BS' has the following
Leray-Serre spectral sequence:

Ey* = H*(BSY) @ H*(Y) = H%4 (Y).
The differential in the Es-term is given by
dy : H*(Y) = uH"(Y) 5 da(y) = ud(y)
where d is the action differential.
Proof. Similar to the proof of [2] Proposition 3.3. O
Definition 10.2. Define the spaces £, Y for n =0,1,2,...,00 by
E,Y = ES'x¢,Y , n<oo
ELY = ES'xaYVY.
For nonnegative integers n and m with m > n define the maps
qr, :H*E,)Y - H'E,Y |, 7':H*E,)Y - H*E,)Y

by letting ¢, be the map induced by the quotient map and 7,* be the transfer
map. Also define ¢2 : H*E.Y — H*E,Y as the map induced by the quotient.

The following theorem is inspired by a result of Tom Goodwillie which can be
found in [4] p. 279. We use it to give a convenient definition of the S!-transfer.

Theorem 10.3. There is a commutative diagram as follows for any m > 1.

E)Y —°%  E.Y
prll P”‘ll (30)

BCyn —2L BS?

Here Q denotes the quotient map and j : Cpm — St the inclusion. The diagram
gives rise to an isomorphism.

@:H*(BCpm)®H*(BS1)H*(EOOY)%H*(EmY) iz Qy— pri(z)gR(y)

The transfer map 7"+« H*E,,Y — H*E,, 1Y is zero on elements of the

form ©(1 ® y) and the identity on elements of the form O(v ®y). We get an
isomorphism
coimH*E,,Y = vH*EyY = H*(S(ExY)4).

Proof. Similar to the proof of [2] Theorem 4.2. O
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Definition 10.4. For any non negative integer n the S!-transfer
T°:H'E,)Y - H'E, Y
is defined as the composite

—1
H*E,Y —— colimH*E,Y ——— H*E,Y
where the direct limit is over the transfer maps 7,7*. Note that |75°| = —1.

Definition 10.5. Let 6y denote the S'-equivariant map
Op: S' x Yo — ES' xY ; (z,9) (ze, 2y)

and let 0, for n = 1,2,...,00 be the maps one obtains by passing to the quo-
tients

0 : S /O xY — E,Y | m<oo
O : XY — E Y.

Proposition 10.6. For non negative integers m and n with n < m the follow-
ing squares commutes.

H*E,Y — H*S'xY) H*EY — H*(S'xY)

s owel x|l el
H*E,)Y _Om H*(S' xY) H*E,Y —"— H*(S'xY)
There are also commutative squares

H*E,Y — H*(S'xY) H'E,Y —* H*S'xY)

q;ﬂ pr;ﬁ nﬂ nﬂ
HELY —=.  mry HELY —~. gy

where 0%, = q%, is the map induced by the inclusion of the fiber, and the transfer
on the right hand side is given by 1@y — 0 and v @y — y.

Proof. Similar to the proof of [2] Proposition 4.6. O
Proposition 10.7. Frobenius reciprocity holds for any n > 0:
(a5 (2)y) = (—1)Fler®(y).
Furthermore the following composition formulas hold.
7°0qh =0 , ¢ oTsc =d.
Proof. Similar to the proof of [2] Proposition 4.7, Proposition 4.8. O

Proposition 10.8. There is always an inclusion Im(q%) C ker(d). If we have
equality Tm(q2,) = ker(d) then the Leray-Serre spectral sequence of the fibration
Y - ES! xg1Y — BS! collapses at the Es-term.
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Proof. By Proposition 10.7 we have d o ¢, = ¢% o 7° 0 ¢%, = 0. The collapse
statement follows by Proposition 10.1. |

Definition 10.9. Put {, = exp(2mi/p) and define the map

fy:S8'xYy — ES'xY?
(z,y) (26,29, G2y, 2y, B 2y).
We let C), act on the space to the left by ¢, - (z,y) = ((p2,y) and on the space

to the right by ¢, - (e,y1,..-,¥p) = ((pe, Y2, ..., Yp,y1). Then the above map is
Cp-equivariant. Passing to the quotients we get a map

fy :8Y/Cp xY — ES' x¢, YP.
Note that this map is natural in ¥ with respect to C-equivariant maps.

Recall the followings facts on the order p cyclic construction [6], [5] and [7].
For any space X with homology of finite type there is a natural isomorphism

H*(ES* x¢, XP) =2 H*(Cp; H*(X)®?)

where C,, acts on H*(X)®P by cyclic permutation with the usual sign convention.
For a homogeneous element y € H*X the C), invariant y®? defines an element
1 ® y®P in the zeroth cohomology group of Cp. Let N =1+ (, + ¢ + -+ +
Qf*l be the norm element in the group ring F,[Cp]. If x1,...,2, € H*X are
homogeneous elements, which are not all equal, then the invariant Nz1®---®zx,
also defines an element 1 ® Nz; ® --- ® z,, in the zeroth cohomology group of
Cp.

Theorem 10.10. The following formula holds where 6; ; denotes the Kronecker
delta:
frA@y®?) =10y” +v@y?~ dy + 5,30 @ fAy.

Proof. We write Yy for the space Y with trivial S'-action. We first prove the
theorem in the special case Y = Y. Here the differential is zero. There is a
factorization

fro 1 SY/Cy x Yy =2 ESY/C, x Yy 25 ESY ¢, VP

By this and the formula for the Steenrod diagonal, [7] p. 119 & Errata, the
result follows.
Next we prove the following formula for a general S!-space:

fFAIQNT1 ® - Qup) =vQd(x1...2p). (31)
There is a commutative diagram as follows:

H*(S')C, x Y) 2 H*(ES' xc, YP)

7'01®1T TUIT

HA(S'xY) <X HH(ES!xYP)
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The lower horizontal map is given by

P
Q‘(l®x1®-~-®xp):H(1®xi+v®dmi)

i=1
as seen by the factorization

prixAyp
—

floStxy —225 (81 xY)? St x (S x V)P

ixnP

IX1XCpx-x(P1
A, gSlxypr 77 P

ES' x YP.

The norm class is hit by the transfer and by finding the coefficient to v in the
above formula (31) follows.

Finally we prove the Theorem in the general case. Because of the degrees
fa(l® v®P) = 0. The two projection maps pr; : S' x Yy — S and pry :
S x Yy — Yy are S'-equivariant. Thus we can use naturality together with the
case Y =Y, and the above equation to find the equations below

f;'lXYO(l ® (1 ®y)®p) =1 & 1 & yp + 6;0,37} & 1 ®ﬁ)‘y7
fé1y, (1@ (0@ 1)) = [,y (1@ (v © dy)®P) = 0.

The action map 1 : S' x Yy — Y is also an S!'-equivariant map, hence by
naturality we have a commutative diagram

fsleO

Sl/Cp X (Sl X Yo) ESt Xy (Sl X Yo)p

1><7]l 1><77pl

S1C, xY I EStxg VP

We compute the pull back of the class 1 ® y®P to the cohomology of the upper
left corner. First we find

AIxn")1ey*P) =12 (1ey+vdy)®P =
p—1

121y +10(vedy)® +) 10 N1ay)® @ (vedy)®P".
1=1

By (31) we can compute [51y, applied to the norm element terms. Only the
i =p — 1 term contributes.

Fory, M@ NA@y)®P™) @ (1@ dy)) = v @ ds1xy, (v @ y*~ ' dy)
=0 ® (dg1(v) @ y*~ 'y + v ® dy, (y* ' dy))
=v®1y? tdy

Altogether we have

(1@n*) o fy(1@y®P) = féiy, o (1 xP) (1 @y®P)
= foixy, 1@ (1@y)*P) +v@ 1@y dy.

We now apply 1®~* on both sides (for the map ~, see the beginning of §3) and
the result follows. |
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11 Construction of classes in string cohomology
from classes in ordinary cohomology

In this section X denotes a connected space.

Definition 11.1. Put {, = exp(27i/p) and define evaluation maps as follows:

evo: AX =X 5 y—~(1) |
evy : BS' x¢, AX = BS' x¢, XP 5 [e7] = [e,7(1),7(Gp)s - (Y]
Definition 11.2. The classes u, f(z),g(x),d(z) € H% (AX) for 2 € H*X are
defined by
f(x) =71° o evi (v ® 2%P), g(z) = 5° o evi (1 ® 2®P),
6(x) = 197 0 evg (z), u = T1{° o evi (vu ® 1%P).
Theorem 11.3. Let ig : X — AX denote the constant loop inclusion and let

iso be the corresponding map of S'-homotopy orbits. There is a commutative
diagram as follows

H*(ES! xg1 AX) —=— H*(BS! x X)

qgcl l (32)

-

H*(AX) — . H*X)
and an inclusion Tm(q%,) C ker(d : H*(AX) — H*(AX)). The constructed
classes are mapped as follows under % .
is (f(x)) =0(x)Sto(x) + o(z)(—1)"mlu™ Sty (x),
; 6 (x)Sty () + o(z)(=1)™mlu™ 1St (2),
5(x))=0 and i (u)=u®l.

Here m = (p — 1)/2. Under q%, the images of the classes are as follows.
15 (f(2)) = &(x)e(?),
G (9(2)) = 6(x)e(a? " dx) + ()0, ze(BA),
G50 (8(2))

Here 6,3 =1 for p=3 and zero otherwise.

e(de) and ¢°(u) =0.

Proof. A commutative diagram of spaces gives the diagram (32) and Proposition
10.7 gives the stated inclusion.

We check the formulas involving <% . There is a commutative diagram as
follows where A : X — X7 is the diagonal and %; is the map of Cj,-homotopy
orbits induced by ip.
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*
€Vqg

H*(X) H*(AX)

s Y

H*(X?)  ——  H*(AX)

TT&J( T&J{

H*(BES' x¢, XP) —1 H*(ES' x¢, AX) —2— H*(BC, x X)

chl Tf°®1l
H*(ES' xg1 AX) —=_ H*(BS! x X)

The horizontal map with no label is the induced in cohomology of the map
v o (7(1),7(4},),...,fy(g;_l)). A homotopy commutative square of spaces
shows that the upper square commutes and it is obvious that the other two
are commutative. We see that i (u) = u ® 1 as stated.

The composite evy oi7 is the diagonal A;p. Its induced in cohomology is the
Steenrod diagonal A% given by the following ([7] p. 119 & Errata):

V(@ AT (1@ a%P) = (=)™ @ Ply+ Y (~1)vu™ )" @ Py
where ¢ = || and v(q) = (m!)?(—1)™@+9/2 From this formula and the lower
part of the diagram we see that
v(@)i%(f(2)) =Y (=)™ © Pla = (—1)12hu 7 Sty (),
v(@)is(9(x)) = Y _(~1)'u™@20 7 @ P = (—1)1 D 5 ().
By [7] Lemma 6.3 one has (m!)? = (—=1)™*! mod p and from this one sees that
v(q)~'(~1)19/2l = 1 for g even and v(q) ~'(—1)1%/% = (—1)™m! for ¢ odd. Hence

we have verified the formulas for i (f(x)) and i%_(g(x)).
By the left part of the diagram we see that

S() =7 oev; oTrj(z@1®---@1).

The composite A} o Tr{ is zero by [7] Lemma 4.1 so i (d(x)) = 0.

Finally we check the formulas for ¢% . It follows directly from Proposition
10.7 that d(x) is mapped as stated and clearly u is mapped to zero. For the
classes f(z) and g(z) we use Proposition 10.6:

qgo o oev] =71° 007 oevi = 717° o (evy 0 61)".
Note that evy o 67 equals the composite

P
X €vy

S1/C, x AX % BSUxe (AX)P -2 BSYxo XP
where fax is the map from Definition 10.9. Thus we have
oo © Ti° 0 €v] = Ti° 0 fix o (1 x evg)”.

From this and Theorem 10.10 we get the stated results. O
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Proposition 11.4. The following diagram is a pullback square.

H*(ES" xg ABF,) —=— F,[u] ® H*BF,

| |

-

ker(d) — .  H*BF,

Proof. In the proof of Proposition 4.9 we saw that Uj, : UBF,(n) — ABF,
was both an S'-map and a homotopy equivalence. So the induced map of
S1-homotopy orbits (LUj,)e is a weak homotopy equivalence. The maps in
the diagram have nice descriptions in terms of this equivalence since there are
commutative diagrams as follows where ) denotes quotient maps.

(Uin)oo
e

UESl X g1 BIFP(TL) ESl X g1 ABFP

o] o]
LES! x BF,(n) —2» ES!x ABF,

(Uin)oo
e

UESl X g1 BIFP(TL) ESl X g1 ABIFP

I =
ES' x BF,(0) ——— BS'x BF,

Hence it suffices to show that the following diagram is a pullback where d )
denotes the differential on H*BIF,(n).

OH*(ES' xg1 BF,(n)) —2°—~ H*(BS' x BF,)

sq" | |

@ ker(d(y,)) — H*(BF))

We have H*(ES" x g1 BFy(n)) = ker(d(,,)) for n # 0 since here the Leray-Serre
spectral sequence has Eg* =0 for ¢ > 1. The result follows. |

As indicated by Theorem 11.3 above it turns out that when |z| is odd then
both f(z) and g(z) can be written as a product of some power of u with another
class. This was not the case for p = 2 as described in [2]. We construct new
classes to get around this difficulty.

Theorem 11.5. Let x € H*X be a cohomology class of odd degree. Then there
exists classes ¢(x),q(z) € H*(ES! xg1 AX) with |¢p(z)] = p(|z| — 1) + 1 and
lg(z)| = p(|x| — 1) 4+ 2 such that

% (6(2)) = Sto(), 4% (6(2)) = Az — w(dz)" ™,
is(a(@)) = Sti(x),  go(a(2)) = Bra.

Proof. It suffices to prove the theorem when X = B"F, for odd n > 1. The
general case then follows by defining ¢(x) = (1 xg1 Ah)*¢(i,,) and g(z) =
(1 xg1 Ah)*q(tp,) where |z| =n and h : X — B"F, has h*(1,) = z.
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For n = 1 we have Stp(t1) = 1 ®¢1 and St1(t1) = 1 ® Beq so here the result
follows from Proposition 11.4.

Assume that n = 2r +1 where r > 1. By Proposition 10.1, Theorem 4.1 and
Theorem 8.6 the E3-term of the Leray-Serre spectral sequence for the fibration
AB"F, — ES! xg1 AB"F, — BS" has the following form:

Es 2Im(d) @ (Fplu] @ ©(K))

where K = H*B"F,. Here u has bidegree (2,0) and an element y in Im(d)
or ©(K) has bidegree (0, |y|). Define s : BS! — ES! xg1 AB"F, such that
pr1 o s = id by choosing a constant loop. By s* we see that the vertical line
(%,0) survives to F.

Up to dimension 2rp 4+ 2p — 1 the only nonzero vertical lines are (x,0),
(%,2rp + 1), (x,2rp + 2) and (*,2rp + 2p — 1) corresponding to the classes u,
d(tn), q(tn) and q(Biy,) respectively. Hence we can define ¢(i,) and ¢(tn,) by

4% (B(en)) = At — tn(den)?~ 1,
45°(q(tn)) = Bty and s*(q(tn)) = 0.

Since | f(tn)] = 2rp+p and |g(tn)] = 2rp+p—1 we see that f(in) = Cru™¢(Ln)
and g(tn) = Cou™ 'q(v,) where C1,Cy € F, and m = (p — 1)/2 as before. By
Theorem 11.3 we conclude that

Ciu™i5 (H(tn)) = (1) mlu™Sto(tn),
Cgum_li;‘o(q(Ln)) = (—1)mm!um_15t1(Ln)

and the result follows. O

Definition 11.6. For z € H*X of even degree we define ¢(z) = f(x) and
q(x) = g(x).

12 String cohomology and the functor /

In this section we prove the main result of this paper.

Theorem 12.1. Let X be a connected space which has finite dimensional mod
p homology in each degree. Then there is a morphism of unstable A-algebras

Y U(H*X) — H*(ES! xg1 AX)

which sends ¢(x), q(x), §(x) for x € H*X and u to the constructed classes with
the same names. The morphism is natural in X. If both of the maps

e:w(H*X) - H*(AX) , ®:0(H*X) - H*(w(H*X))

are isomorphisms then so is ¥. In particular, when (n;) is a sequence (possibly
finite) of positive integers such that the set {iln; = N} is finite for each N and
X =[[B™F,, then v is an isomorphism.

Proof. Assume that both e and ® are isomorphisms and put K = H*X. By
Theorem 7.7 we have that DR surjects ker(d) and from the results in Section
11 we see that Im(DR) C Im(q%). Hence Im(q%,) = ker(d). It then follows
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from Proposition 10.8 that the Leray-Serre spectral sequence associated to the
fibration AX — ES! xg1 AX — BS! collapses at the E3-term:

Eo = E3 2 ker(d) © ud(K) @ u’a(K) @ . .. (33)

By Remark 7.4 there is a filtration of ¢(K) which associated graded object
is also (33). If we fix a dimension the filtration is finite and we conclude that
{(K) and H*(ES! x g1 AX) have the same dimension in each degree. Hence it
suffices to show that the map 9 in the statement is a well defined morphism
which is surjective.

The constructed classes are algebra generators for H*(ES! x g1 AX) by the
collapse, and the formulas for their images under % given in Section 11 shows
that Im(é%,) = R(K). Hence we have a commutative diagram as follows:

-

H*(ES' xg1 AX) —=— R(K)

& | n|

ker(d) 2,

The kernel of p; is the ideal (u ® 1) and i* (u) = u ® 1. Since u € ker(q2,)
and i’ is surjective we conclude that the restriction i% | : ker(¢%, ) — ker(py) is
surjective. Hence we have a surjection into the pullback.

We now restrict to the case where X is a product of Eilenberg-MacLane
spaces as in the last part of the statement. Here e is an isomorphism by Propo-
sition 3.7 and Theorem 4.1 and ® is an isomorphism by Proposition 7.8 and
Theorem 8.6.

The above surjection into the pullback together with Theorem 9.5 gives
us a surjective morphism v’ : H*(ES! xg1 AX) — ¢(K) which is then an
isomorphism. By definition it has inverse .

By the fact that B"F, classifies degree n cohomology and naturality of the
constructed classes, we can now conclude that the defining relations for ¢(K)
are universal for the constructed classes. Hence 1 is a well defined morphism in
general.

In the case where e and ® are isomorphisms, the collapse ensures that ¢ is
surjective and hence an isomorphism. [l

Corollary 12.2. Let X be a connected space and assume that H*X is a poly-
nomial algebra on a set of even dimensional generators. Assume also that H; X
is finite for each i. Then v is an isomorphism.

Proof. If K is zero in odd degrees then w(K) is the ordinary de Rham complex
Q(K|F,). Furthermore, ©(K) is the de Rham complex Q(K|F,) where K is the
algebra defined by K™ = K™ and K™ = 0 for m # 0 mod p. The map ® is the
Cartier map.

The Eilenberg-Moore spectral sequence for H*(AX) has Hochschild homol-
ogy of H*X as its FEo-term and it collapses since the algebra generators sit in
Ey* and E; "*. By the Hochschild-Konstant-Rosenberger theorem Hochschild
homology is isomorphic to the de Rham complex and one concludes that e is an
isomorphism. The Cartier map @ is also an isomorphism. [l
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Remark 12.3. Theorem 12.1 respects products in the following sense. Assume
that X and Y are connected spaces with mod p homology of finite type and that
ex, Px, ey, Py are isomorphisms. Then exxy and ®xyy are isomorphisms
and Y xxy is an isomorphism.

13 Appendix: Unstable A-algebras

In this appendix we prove Proposition 3.4. We shall need the following result.

Lemma 13.1. For any unstable A-algebra K and x € K the following equations
hold.

. P | =
Pirg — A(Prz) , i=0 mod D (34)
0 ,  otherwise
ﬂ/\(P%LL') , i=0modp
P'BA\x = (ﬂP%Pl:c)p , 1=1modp (35)
0 , otherwise

Proof. We just prove (34) since the proof of (35) is similar. When |z| is even
both sides in the equation are zero. Assume that |z| is odd. By the instability
condition P\x = 0 when 2i > p(|z| — 1) + 1. When i is divisible by p this
inequality implies 2i > p(|z| — 1) + p or % > |z| and since |z| is odd % > |z|.
So PPz = (0 and the equation holds in this case. If 2i = p(|z| — 1) then
Pi\z = N2z = \(P"/Pz).

Finally assume that 2i < p(|z| — 1). Then we can apply the Adem relation:

1 — lzl=1 — z|—1
PzP\T\Z* = (71)z+t ((p 1)( 2 t) 1>Pz+ 7‘2 —tPtZ,'
t=0

lz|—1

The instability condition shows that P+ ~tPlg = 0 unless i < pt. But the
binomial coefficient is zero when i < pt. So we get zero when ¢ # 0 mod p and
the term corresponding to ¢t = i/p when ¢ = 0 mod p. O

We now prove Proposition 3.4.

Proof. Let dK denote the graded F,-vector space given by (dK)™ = K™™' and
(dK)~1 = 0. We write dz for the element in dK corresponding to = in K hence
d(z +y) = dx + dy. We define an A-algebra structure on dK by P'dr = dP'z
and fBdr = —dfz. Let F(dK) denote the free graded commutative algebra
on the F,-vector space dK. By the Cartan formula F(dK) is an .A-algebra
and the graded symmetric product K ® F(dK) is an A-algebra. By definition
w(K) =K ® F(dK)/I where I is the ideal generated by

1o d(zy) —d(z) @y — (-1)"z 0 d(y), (36)
10 (d(A\x) — (dx)P), (37)
16 d(BAx). (38)
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We verify that A- I C I such that w(K) is an 4-algebra. We have

Pr1@d(zy) —dz oy — (-1)"lz o dy) =
> (LedP'(z)P(y)) — dP'z © Ply — (-1)1*\P'z © dP7y)

i+j=n
which is in I by (36) since the degree of P is even. Further

Bl ed(zy) —de oy — (—1)*lz @ dy) =
— (1@ dB)y) —dfz 0y — (-1)1718z © dy)
— (-D)ll(1 e d(zBy) — dz ® By — (-1)1*lz @ dBy)

which is also in I by (36).

In any A-algebra one has P(a?) = (P"/?a)? when i = 0 mod p and zero
otherwise, since this fact is a consequence of the Cartan formula alone. So by
Lemma 13.1 we have the following relation in F'(dK) when ¢ = 0 mod p:

Pi(d(\z) — (dz)?) = d(P'\z) — (Prdx)P = d(AP¥z) — (dP¥z)P.

For i # 0 mod p we get zero. So P? applied to an element of the form (37) lies
in I. If we apply (3 to such an element we also land in I by (38). Finally Lemma
13.1 shows that P*(1 ® d(BAz)) € I and trivially 3(1 ® d(8Ax)) € 1.

We verify that w(K) € U. We must show that Pidz = 0 if 2i > |z| — 1. This
holds if 2i > |x| since K € U. If 2i = |z| we have Pidz = dP'x = d(aP) = 0. We
must also show that 3P‘dx = 0 when 2i +1 > |z| — 1. This holds if 2i +1 > |z|
since K € U and if 2i + 1 = |z| we have BPidx = —dBP'x = —dB z = 0.
Since the action on products are by the Cartan formula we have shown that

w(K) el.

Finally we check that w(K) € K. The Cartan formula holds by definition.
For |z| odd we have p's (dz) = d\x = (dz)P and the result follows. O
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