Odd primary string cohomology

Iver Ottosen *

 $Fakultät \ f\"ur \ Mathematik, \ Universit\"at \ Bielefeld, \ Postfach \ 100131, \ D-33501 \ Bielefeld \\ Fax \ number: \ +49 \ 521 \ 106 \ 4743 \\ E-mail \ address: \ ottosen@mathematik.uni-bielefeld.de \\ 26 \ September \ 2000$

Abstract

Let X be a connected space and let $K=H^*(X;\mathbb{F}_p)$ where p is an odd prime. We construct functors ω and ℓ which approximate the cohomology of the free loop space ΛX as follows: There are morphisms $\omega(K) \to H^*(\Lambda X;\mathbb{F}_p)$ and $\ell(K) \to H^*_{S^1}(\Lambda X;\mathbb{F}_p)$. These are isomorphisms when X is a product of Eilenberg-MacLane spaces of type $K(\mathbb{F}_p,n)$ for $n \geq 1$.

MSC: 55N91; 55P35; 55R12

1 Introduction

The string cohomology of a topological space X with coefficients in a ring R is defined as follows:

$$H_{st}^*(X;R) := H_{S^1}^*(\Lambda X;R) = H^*(ES^1 \times_{S^1} \Lambda X;R)$$

where ΛX denotes the free loop space of X. These cohomology groups together with the cohomology of the free loop space itself $H^*(\Lambda X;R)$ plays a central role in geometry and topology. It is however not know how to compute these in general.

When $R = \mathbb{F}_2 = \mathbb{Z}/2$, M. Bökstedt and I found computable functors of $H^*(X; \mathbb{F}_2)$ which approximate these cohomology groups [2]. The purpose of this paper is to generalize these functors to the case $R = \mathbb{F}_p = \mathbb{Z}/p$ where p is any of the odd primes. Certain algebra generators in string cohomology are more difficult to construct in the odd primary case. Hence method and strategy differs from [2] at various places.

2 Notation

Fix an odd prime p. We use \mathbb{F}_p -coefficients everywhere unless otherwise is specified. \mathcal{A} denotes the mod p Steenrod algebra, \mathcal{U} the category of unstable \mathcal{A} -modules and \mathcal{K} the category of unstable \mathcal{A} -algebras. We write \mathcal{K}_0 for the full

^{*}The author was supported by the European Union TMR network ERB FMRX CT-97-0107: Algebraic K-theory, Linear Algebraic Groups and Related Structures.

subcategory of K with the connected unstable A-algebras as its objects. The category of differential graded algebras is denoted DGA.

For $K \in \mathcal{K}$ we define $\lambda : K \to K$ as follows

$$\lambda x = \begin{cases} P^{\frac{|x|-1}{2}}x &, |x| \text{ odd} \\ 0 &, |x| \text{ even} \end{cases}$$

Note that $|\lambda x| = p(|x|-1) + 1$. Note also that λ is a derivation over Frobenius by the Cartan formula

$$\lambda(xy) = \lambda(x)y^p + x^p\lambda(y).$$

In any graded \mathbb{F}_p -algebra K we define $\sigma: K \to \mathbb{F}_p$ by $\sigma(x) = 1$ for |x| odd and $\sigma(x) = 0$ for |x| even. We also define $\hat{\sigma}: K \to \mathbb{F}_p$ by $\hat{\sigma}(x) = 1 - \sigma(x)$.

3 The approximation functor ω

Let Y be a connected S^1 -space with action map $\eta: S^1 \times Y \to Y$. We have $\eta \circ \gamma = id$ where $\gamma(y) = (1, y)$. Recall that $H^*(S^1) = \Lambda(v)$ where |v| = 1.

Definition 3.1. Define the map $d: H^*(Y) \to H^{*-1}(Y)$ by

$$\eta^*(y) = 1 \otimes y + v \otimes dy.$$

Proposition 3.2. The map d satisfies the following:

$$d \circ d = 0, \tag{1}$$

$$d(x+y) = dx + dy, (2)$$

$$d(xy) = d(x)y + (-1)^{|x|}xd(y), (3)$$

$$P^{i}(dx) = d(P^{i}x) \text{ for } i > 0, \tag{4}$$

$$\beta(dx) = -d(\beta x),\tag{5}$$

$$d(\lambda x) = (dx)^p, \tag{6}$$

$$d(\beta \lambda x) = 0. (7)$$

Proof. Similar to the p=2 case proved in [2] Proposition 3.2.

Definition 3.3. For $K \in \mathcal{K}_0$ we define $\omega(K)$ as the symmetric product of K with the free graded commutative algebra on generators dx of degree |x|-1 for $x \in K$ divided by the ideal generated by the elements

$$d(x+y) - dx - dy, (8)$$

$$d(xy) - d(x)y - (-1)^{|x|}xd(y), (9)$$

$$d(\lambda x) - (dx)^p, \tag{10}$$

$$d(\beta \lambda x)$$
. (11)

There is a degree -1 differential d on $\omega(K)$ defined by d(x) = dx for $x \in K$ as a derivation over K. Hence $(\omega(K), d) \in DGA$.

Proposition 3.4. For $K \in \mathcal{K}$ we can define an \mathcal{A} -action on $\omega(K)$ by $\theta(x) = \theta x$ and $\theta(dx) = (-1)^{|\theta|} d(\theta x)$ for $x \in K$ and $\theta \in \mathcal{A}$. In this way ω becomes a functor $\omega : \mathcal{K}_0 \to \mathcal{K}$. Note that the differential d on $\omega(K)$ is graded \mathcal{A} -linear.

Definition 3.5. For a connected space X we define the map

$$e:\omega(H^*X)\to H^*(\Lambda X)$$

by $x \mapsto ev_0^*(x)$ and $dx \mapsto dev_0^*(x)$ where $ev_0: \Lambda X \to X; f \mapsto f(1)$.

Remark 3.6. The map e is a morphism in \mathcal{K} as well as a morphism in DGA. It is also natural in X. We view $\omega(H^*X)$ as an approximation to $H^*(\Lambda X)$ via the morphism e.

Proposition 3.7. Let $K, L \in \mathcal{K}_0$ and let $i : K \to K \otimes L$ and $j : L \to K \otimes L$ be the inclusions given by $i(x) = x \otimes 1$ and $j(y) = 1 \otimes y$. The composite

$$\kappa : \omega(K) \otimes \omega(L) \xrightarrow{\omega(i) \otimes \omega(j)} \omega(K \otimes L) \otimes \omega(K \otimes L) \xrightarrow{\mu} \omega(K \otimes L),$$

where μ denotes the product, is an isomorphism in both DGA and K. For connected spaces X and Y with homology of finite type the following diagram commutes.

$$\begin{array}{ccc} \omega(H^*X)\otimes\omega(H^*Y) & \stackrel{\kappa}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} & \omega(H^*X\otimes H^*Y) \\ e\otimes e \Big\downarrow & e \Big\downarrow \\ H^*(\Lambda X)\otimes H^*(\Lambda Y) & \stackrel{\cong}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} & H^*(\Lambda(X\times Y)) \end{array}$$

Proof. The map κ is a morphism in both DGA and K since it is a composite of maps which are morphisms in both categories. For $a \in K$ and $b \in L$ we have that $\kappa(a \otimes b) = a \otimes b$ and $\kappa(d_{\otimes}(a \otimes b)) = d(a \otimes b)$. We verify that there is a well defined \mathbb{F}_p -algebra map γ in the opposite direction of κ with $\gamma(a \otimes b) = a \otimes b$ and $\gamma(d(a \otimes b)) = d_{\otimes}(a \otimes b)$ such that κ is an isomorphism.

Elements of the form (8) are mapped to zero by definition. By direct computation one sees that the elements of the form (9) are also mapped to zero. Assuming that $\sigma(a) = 1$ and $\sigma(b) = 0$ we find

$$d(\lambda(a \otimes b)) - (d(a \otimes b))^p = d(\lambda(a) \otimes b^p) - d(a)^p \otimes b^p \mapsto d(\lambda(a) \otimes b^p - d(a)^p \otimes b^p = 0,$$
$$d(\beta(\lambda(a \otimes b))) = d(\beta\lambda(a) \otimes b^p) \mapsto d(\beta\lambda(a)) \otimes b^p = 0$$

and if $\sigma(a) = \sigma(b)$ the elements are already zero in $\omega(K \otimes L)$. The above description of κ on generators shows that the diagram commutes.

4 The ω approximation for certain Eilenberg-MacLane spaces

For an Abelian group A and positive integer n we let B^nA denote the Eilenberg-MacLane space K(A, n). In this section we prove the following result:

Theorem 4.1. The map $e: \omega(H^*B^n\mathbb{F}_p) \to H^*(\Lambda B^n\mathbb{F}_p)$ is an isomorphism in \mathcal{K} and DGA for each $n \geq 1$.

We first consider the case $n \geq 2$. The Whitehead theorem together with the long exact sequence of homotopy groups and the five lemma proves the following:

Proposition 4.2. Let G be a connected topological group. Then there is a commutative diagram as follows

where $m(f,x)=(z\mapsto f(z)\cdot x)$. The map m is a weak homotopy equivalence.

Proposition 4.3. For $n \geq 2$ there is an isomorphism

$$m^*: H^*(\Lambda B^n \mathbb{F}_p) \to H^*(B^n \mathbb{F}_p) \otimes H^*(B^{n-1} \mathbb{F}_p)$$

with the property $m^* \circ e(\iota_n) = \iota_n \otimes 1$ and $m^* \circ e(d\iota_n) = c_n 1 \otimes \iota_{n-1}$ for some nonzero constant $c_n \in \mathbb{F}_p$.

Proof. The space $B^n\mathbb{F}_p$ is a topological Abelian group since \mathbb{F}_p is an Abelian group. Proposition 4.2 with $G=B^n\mathbb{F}_p$ gives that m^* is an isomorphism and that $m^*\circ ev_0^*(\iota_n)=1\otimes\iota_n$ as stated. We have $m^*(dev_0^*\iota_n)=c_n1\otimes\iota_{n-1}$ for some $c_n\in\mathbb{F}_p$ since $1\otimes\iota_{n-1}$ is the only class in degree n-1 of the right hand side. Let h denote the composite

$$h: S^1 \times B^n \mathbb{F}_p \times B^{n-1} \mathbb{F}_p \xrightarrow{\quad m \quad} S^1 \times \Lambda B^n \mathbb{F}_p \xrightarrow{\quad \eta \quad} \Lambda B^n \mathbb{F}_p \xrightarrow{\quad ev_0 \quad} B^n \mathbb{F}_p$$

where η is the action map. Then $h^*(\iota_n) = 1 \otimes \iota_n \otimes 1 + c_n v \otimes 1 \otimes \iota_{n-1}$. If $c_n = 0$ then $ev_0 \circ \eta$ is homotopic to the composite

$$k:S^1\times \Lambda B^n\mathbb{F}_p \xrightarrow{\ \ pr_2\ \ } \Lambda B^n\mathbb{F}_p \xrightarrow{\ \ ev_0\ \ \ } B^n\mathbb{F}_p$$

since $B^n\mathbb{F}_p$ classifies mod p cohomology in degree n. But we have $ev_0 \circ \eta(z, f) = f(z)$ so its adjoint is the identity on $\Lambda B^n\mathbb{F}_p$. The adjoint of k is the map $\Lambda B^n\mathbb{F}_p \to \Lambda B^n\mathbb{F}_p$ which sends a loop f to the constant loop with value f(1). The maps k and $ev_0 \circ \eta$ cannot be homotopic since their adjoints are not. \square

Proposition 4.4. The map $e: \omega(H^*B^n\mathbb{F}_p) \to H^*(\Lambda B^n\mathbb{F}_p)$ is an isomorphism for each $n \geq 2$.

Proof. Since the cohomology of the spaces $B^m\mathbb{F}_p$ are free objects in \mathcal{K} we can define a morphism in \mathcal{K} as follows:

$$f: H^*(B^n \mathbb{F}_p) \otimes H^*(B^{n-1} \mathbb{F}_p) \to \omega(H^*B^n \mathbb{F}_p)$$
 , $\iota_n \otimes 1 \mapsto \iota_n$
, $1 \otimes \iota_{n-1} \mapsto c_n^{-1} d\iota_n$.

We have $m^* \circ e \circ f = id$ and $f \circ m^* \circ e = id$ since these equalities hold on generators.

The case n=1 is interesting since here $\Lambda B\mathbb{F}_p$ splits in p components. We will use the following result to see that $\omega(H^*B\mathbb{F}_p)$ split accordingly.

Lemma 4.5. There is an isomorphism of rings as follows

$$\alpha: \mathbb{F}_p[x]/(x^p - x) \to (\mathbb{F}_p)^p \quad ; \quad x \mapsto (0, 1, 2, \dots, p - 1)$$

where $\mathbb{F}_p[x]$ is the polynomial ring in one variable x of degree zero and $(\mathbb{F}_p)^p$ is the p-fold Cartesian product of \mathbb{F}_p by itself.

Proof. Use the factorization $x^p - x = \prod_{n \in \mathbb{F}_p} (x - n)$ and the Chinese remainder theorem.

Remark 4.6. Let $e_n = \alpha^{-1}(0, \dots, 0, 1, 0, \dots, 0)$ with the 1 on the *n*th place for $n \in \mathbb{F}_p$. Clearly $e_n e_m = 0$ for $n \neq m$, $e_n^2 = e_n$ and $\sum e_n = 1$. Also $x e_n = n e_n$. Finding eigenvectors for x f(x) = n f(x) and normalizing one gets

$$e_0 = 1 - x^{p-1}$$

 $e_m = -\sum_{i=1}^{p-1} (\frac{x}{m})^i$, $m \neq 0$

Definition 4.7. For $n \in \mathbb{F}_p$ define the following action map

$$f_n: \mathbb{Z} \times \mathbb{F}_p \to \mathbb{F}_p \quad ; \quad (r, [s]) \mapsto [nr + s].$$

We let $B\mathbb{F}_p(n)$ denote $B\mathbb{F}_p$ equipped with S^1 -action Bf_n and write d_n for the corresponding action differential on $H^*B\mathbb{F}_p(n)$.

Proposition 4.8. We have $H^*B\mathbb{F}_p(n) = \Lambda(v_n) \otimes \mathbb{F}_p[\beta v_n]$ where $|v_n| = 1$. The differential d_n on this algebra is given by $d_n v_n = n$ and $d_n \beta v_n = 0$ for each $n \in \mathbb{F}_p$.

Proof. We must show that $(Bf_n)^*(v_n) = 1 \otimes v_n + nv \otimes 1$. This follows from $H_1(Bf_n) = \pi_1(Bf_n) = f_n$ by taking duals. Since $\lambda v_n = \iota_n$ the class βv_n is mapped to zero.

Proposition 4.9. The map $e: \omega(H^*B\mathbb{F}_p) \to H^*(\Lambda B\mathbb{F}_p)$ is an isomorphism.

Proof. From [1] Lemma 7.11 we have $\Lambda B\mathbb{F}_p \simeq \sqcup_{n \in \mathbb{F}_p} B\mathbb{F}_p$. Define maps $j_n : B\mathbb{F}_p(n) \to \Lambda B\mathbb{F}_p$ by $x \mapsto (z \mapsto Bf_n(z,x))$ for $n \in \mathbb{F}_p$. These are S^1 -maps. Let $(\Lambda B\mathbb{F}_p)(n)$ denote the component of $\Lambda B\mathbb{F}_p$ containing the image of j_n . Then the restriction $j_n|: B\mathbb{F}_p(n) \to (\Lambda B\mathbb{F}_p)(n)$ is an S^1 -map and a homotopy equivalence. Especially the induced in cohomology $(j_n|)^*$ is an isomorphism of differential graded algebras. By Proposition 4.8 we see that $(\Lambda B\mathbb{F}_p)(n) \neq (\Lambda B\mathbb{F}_p)(m)$ for $n \neq m$ such that $\sqcup j_n : \sqcup B\mathbb{F}_p(n) \to \Lambda B\mathbb{F}_p$ is an S^1 -map and a homotopy equivalence. Especially $(\sqcup j_n)^* = (j_0^*, \ldots, j_{p-1}^*)$ is an isomorphism. So it suffices to show that $g = (j_0^*, \ldots, j_{p-1}^*) \circ e$ is an isomorphism. We have

$$(j_n^* \circ e)(x) = j_n^* \circ ev_0^*(x) = (ev_0 \circ j_n)^*(x) = x, \tag{12}$$

$$(j_n^* \circ e)(dx) = j_n^*(dev_0^*(x)) = d_n \circ j_n^* \circ ev_0^*(x) = d_n x \tag{13}$$

for $x \in H^*B\mathbb{F}_p$ which describes the map g on generators. By definition we have

$$\omega(H^*B\mathbb{F}_p) = \Lambda(\iota_1) \otimes \mathbb{F}_p[\beta\iota_1] \otimes (\mathbb{F}_p[d\iota_1]/((d\iota_1)^p - d\iota_1)).$$

From Lemma 4.5 and (13) we see that g is an isomorphism in degree zero. By (12) we conclude that it is an isomorphism in all degrees.

5 Steenrod diagonal elements

In this and the following four sections we describe algebra related to certain classes in string cohomology. The motivation comes later in Theorem 11.3. In the following K denotes an unstable A-algebra. The polynomial algebra $\mathbb{F}_p[u]$ where |u|=2 is an object in K by the isomorphism $\mathbb{F}_p[u]\cong H^*(BS^1)$.

Definition 5.1. For $x \in K$ and $\epsilon = 0, 1$ we define $St_{\epsilon}(x) \in \mathbb{F}_p[u] \otimes K$ by

$$St_{\epsilon}(x) = u^{-\epsilon \hat{\sigma}(x)} \sum_{i \ge 0} (-u^{p-1})^{[|x|/2]-i} \otimes \beta^{\epsilon} P^{i} x.$$

Note that the terms where the total exponent of u is negative has $\beta^{\epsilon}P^{i}x = 0$. Let $R(K) \subseteq \mathbb{F}_{p}[u] \otimes K$ be the sub- \mathbb{F}_{p} -algebra generated by $u \otimes 1$ and $St_{\epsilon}(x)$ for all $x \in K$ and $\epsilon = 0, 1$.

Theorem 5.2. For each $\theta \in \mathcal{A}$ one has $\theta R(K) \subseteq R(K)$. Thus R is a functor $R: \mathcal{K} \to \mathcal{K}$. The explicit formulas are as follows where $n = \lceil |x|/2 \rceil$ and $\epsilon = 0, 1$:

$$P^{i}St_{\epsilon}(x) = \sum_{t} \binom{(p-1)(n-t) + \epsilon\sigma(x)}{i-pt} u^{(p-1)(i-pt)} St_{\epsilon}(P^{t}x)$$

$$-\epsilon(-1)^{\sigma(x)} \sum_{t} \binom{(p-1)(n-t) - 1 + \sigma(x)}{i-pt-1} u^{(p-1)(i-pt)-1 + (2-p)\sigma(x)} St_{0}(\beta P^{t}x),$$

$$\beta St_{\epsilon}(x) = (1-\epsilon)u^{\hat{\sigma}(x)} St_{1}(x).$$

Proof. The formula for the Bockstein operation follows directly by the definition of $St_{\epsilon}(x)$. We use results from [3] to prove the other formula. By [8] we have that $\mathbb{F}_p[u, u^{-1}]$ is an \mathcal{A} -algebra with $\beta = 0$ and

$$P^{i}u^{j} = {j \choose i}u^{j+i(p-1)} \quad ; \quad i, j \in \mathbb{Z} \quad ; \quad i \ge 0.$$

Here the following extended definition of binomial coefficients is used where $r \in \mathbb{R}$ and $k \in \mathbb{Z}$.

$$\binom{r}{k} = \begin{cases} \frac{r(r-1)\dots(r-k+1)}{k!} & , k > 0\\ 1 & , k = 0\\ 0 & , k < 0 \end{cases}$$

Let $\Delta = \Lambda(a) \otimes \mathbb{F}_p[b, b^{-1}]$ with |a| = 2p - 3, |b| = 2p - 2 be the \mathcal{A} -algebra introduced in [3] (2.6). That is $\beta a = b$ and

$$\begin{split} P^i(b^j) &= (-1)^i \binom{(p-1)j}{i} b^{i+j}, \\ P^i(ab^{j-1}) &= (-1)^i \binom{(p-1)j-1}{i} ab^{i+j-1}. \end{split}$$

Note that we have changed the names of the generators. In [3] they were named u and v instead of a and b. We define an additive transfer map as follows:

$$\tau: \Delta \to \mathbb{F}_p[u, u^{-1}] \; ; \; b^j \mapsto 0 \; ; \; ab^{j-1} \mapsto (-u^{p-1})^j u^{-1}.$$

Note that $|\tau| = -1$. A direct verification shows that τ is \mathcal{A} -linear.

A functor R_+ from the category of graded \mathcal{A} -modules to itself is constructed in [3]. In the case of an unstable \mathcal{A} -algebra K it comes with an \mathcal{A} -linear map $f: R_+K \to \Sigma\Delta \otimes K$ defined by [3] (3.1), (3.2). The composite

$$R_+ K \xrightarrow{f} \sigma \Delta \otimes K \xrightarrow{\Sigma \tau \otimes 1} \Sigma \mathbb{F}_p[u, u^{-1}] \otimes K$$

is given by

$$sb^{k} \otimes x \mapsto -s \sum_{j} (-u^{p-1})^{k-j} u^{-1} \otimes \beta P^{j} x,$$

$$sab^{k-1} \otimes x \mapsto s \sum_{j} (-u^{p-1})^{k-j} u^{-1} \otimes P^{j} x.$$

Especially $sb^n \otimes x \mapsto -su^{\sigma(x)}St_1(x)$ and $sab^{n-1} \otimes x \mapsto su^{-1}St_0(x)$ where n = [|x|/2]. The formulas [3] (3.4), (3.5) for the \mathcal{A} -action on R_+M gives the following formulas for the \mathcal{A} -action on $u^{\sigma(x)}St_1(x)$ and $u^{-1}St_0(x)$:

$$P^{i}(u^{\sigma(x)}St_{1}(x)) = \sum_{t} {\binom{(p-1)(n-t)}{i-pt}} u^{(p-1)(i-pt)-\sigma(x)}St_{1}(P^{t}x)$$

$$-\sum_{t} (-1)^{\sigma(x)} {\binom{(p-1)(n-t)-1}{i-pt-1}} u^{(p-1)(i-pt)-\sigma(x))-1}St_{0}(\beta P^{t}x),$$

$$P^{i}(u^{-1}St_{0}(x)) = \sum_{t} {\binom{(p-1)(n-t)-1}{i-pt}} u^{(p-1)(i-pt)-1}St_{0}(P^{t}x).$$

This proves the result directly for $\sigma(x) = 0$ and $\epsilon = 1$. By the Cartan formula applied to $uu^{-1}St_{\epsilon}(x)$ we have that $P^{i}St_{\epsilon}(x) = uP^{i}(u^{-1}St_{\epsilon}(x)) + u^{p}P^{i-1}(u^{-1}St_{\epsilon}(x))$. By combining this with the formulas above we get the result in the other cases.

6 The functor ℓ

In this section we describe the functor which approximates string cohomology. We also define maps which relate this functor to the functors R and ω .

Definition 6.1. For $K \in \mathcal{K}_0$ we define $\ell(K)$ as the graded commutative \mathbb{F}_p -algebra generated by the classes

$$\phi(x)$$
 of degree $p|x| - \sigma(x)(p-1)$,
 $\delta(x)$ of degree $|x| - 1$,
 $q(x)$ of degree $p|x| - 1 - \sigma(x)(p-3)$

for all homogeneous $x \in K$ and a class u of degree 2; modulo the ideal generated by

$$\phi(x+y) - \phi(x) - \phi(y) + \sigma(x) \sum_{i=0}^{p-2} (-1)^i \delta(x)^i \delta(y)^{p-2-i} \delta(xy), \tag{14}$$

$$\delta(x+y) - \delta(x) - \delta(y), \tag{15}$$

$$q(x+y) - q(x) - q(y) + \hat{\sigma}(x) \sum_{i=1}^{p-1} (-1)^{i} \frac{1}{i} \delta(x^{i} y^{p-i}), \tag{16}$$

$$(-1)^{\sigma(a)\hat{\sigma}(c)}\delta(a)\delta(bc) + (-1)^{\sigma(b)\hat{\sigma}(a)}\delta(b)\delta(ca) + (-1)^{\sigma(c)\hat{\sigma}(b)}\delta(c)\delta(ab), \tag{17}$$

$$\phi(ab) - (-u^{p-1})^{\sigma(a)\sigma(b)}\phi(a)\phi(b),\tag{18}$$

$$q(ab) - (-u^{p-1})^{\sigma(a)\sigma(b)} (u^{\sigma(b)}q(a)\phi(b) + (-u)^{\sigma(a)}\phi(a)q(b)), \tag{19}$$

$$q(x)^p - u^{p-1}q(\lambda x) - \phi(\beta \lambda x), \tag{20}$$

$$\delta(a)\phi(b) - \delta(ab^p) - \delta(a\lambda b) + \delta(ab)\delta(b)^{p-1}, \tag{21}$$

$$\delta(a)q(b) - \delta(ab^{p-1})\delta(b) - \delta(a\beta\lambda b), \tag{22}$$

$$\delta(x)u,\tag{23}$$

$$q(\beta \lambda x),$$
 (24)

$$\delta(\beta \lambda x) \tag{25}$$

where $a, b, c, x, y \in K$ and |x| = |y|. It is understood that $\delta(1) = q(1) = 0$.

Remark 6.2. We have some immediate consequences of these relations:

- By (14)-(16) we have $\phi(0) = q(0) = \delta(0) = 0$.
- By (18), (19) and (21) the algebra $\ell(K)$ is unital with unit $\phi(1)$.
- By (18) and (19) we have $q(a^n) = n\phi(a)^{n-1}q(a)$ such that $q(a^p) = 0$.
- By (22) we have $\delta(b^p) = 0$ and also the important relation $\delta(\lambda b) = \delta(b)^p$.

Lemma 6.3. For any $K \in \mathcal{K}_0$ the following relations hold in $\omega(K)$:

$$\sum_{i=1}^{p-1} (-1)^{i+1} \frac{1}{i} d(x^i y^{p-i}) = (x+y)^{p-1} d(x+y) - x^{p-1} dx - y^{p-1} dy, \qquad (26)$$

$$\sum_{j=0}^{p-2} (-1)^{j+1} (dx)^j (dy)^{p-2-j} d(xy) =$$

$$(d(x+y))^{p-1}(x+y) - (dx)^{p-1}x - (dy)^{p-1}y. (27)$$

Here |x| = |y| is assumed to be even in (26) and odd in (27).

Proof. We verify (26) and omit the proof of (27) which is similar. Since d is a derivation we have

$$\sum_{i=1}^{p-1} (-1)^{i+1} \frac{1}{i} d(x^i y^{p-i}) = \sum_{i=1}^{p-1} (-1)^{i+1} (x^{i-1} y^{p-1} dx - x^i y^{p-i-1} dy).$$

By splitting the sum in two at the minus sign and substituting j = i - 1 in the first of the resulting sums we see that the above equals the following:

$$\sum_{i=0}^{p-2} (-1)^j x^j y^{p-j-1} dx + \sum_{i=1}^{p-1} (-1)^i x^i y^{p-i-1} dy =$$

$$\sum_{t=0}^{p-1} (-1)^t x^t y^{p-t-1} (dx + dy) - x^{p-1} dx - y^{p-1} dy.$$

For $0 \le t \le p-1$ we have that t! is invertible in \mathbb{F}_p and also

$$\binom{p-1}{t}t! = (p-1)(p-2)\dots(p-t) = (-1)^t t! \mod p.$$

Thus we have $\binom{p-1}{t} = (-1)^t$. Substituting this in the above and using the binomial formula the result follows.

Proposition 6.4. For any $K \in \mathcal{K}_0$ there is a natural homomorphism of \mathbb{F}_p -algebras which we call the de Rham map

$$DR : \ell(K) \to \omega(K); \quad \phi(x) \mapsto x^p + \lambda x - x(dx)^{p-1},$$

$$q(x) \mapsto x^{p-1} dx + \beta \lambda x,$$

$$\delta(x) \mapsto dx, \quad u \mapsto 0.$$

and we have $\operatorname{Im}(DR) \subseteq \ker(d : \omega(K) \to \omega(K))$. There is also a natural homomorphism of \mathbb{F}_p -algebras which we call the Steenrod map

$$St: \ell(K) \to \mathbb{F}_p[u] \otimes K; \quad \phi(x) \mapsto St_0(x), \quad q(x) \mapsto St_1(x),$$

$$\delta(x) \mapsto 0, \quad u \mapsto u \otimes 1.$$

The image of this map is Im(St) = R(K). There is a commutative diagram of \mathbb{F}_p -algebras as follows.

$$\ell(K) \xrightarrow{St} \mathbb{F}_p[u] \otimes K$$

$$DR \downarrow \qquad \qquad p_1 \downarrow$$

$$\omega(K) \xrightarrow{p_2} K$$

where the algebra maps p_1 and p_2 are given by $p_1(u) = 0$ and $p_2(dx) = 0$, $p_2(x) = x$ for each $x \in K$.

Proof. We check that the formulas for DR maps the relations (14)-(25) to zero. Formula (27) and the additivity of $x \mapsto x^p$ shows that (14) is mapped to zero. It is trivial that (15) is mapped to zero. By (26) and the additivity of $x \mapsto \beta \lambda x$ it follows that (16) is mapped to zero.

Taking the derivative of products and permuting factors we find the following equations:

$$\begin{split} d(a)d(bc) &= d(a)d(b)c + (-1)^{\sigma(b)}d(a)bd(c), \\ d(b)d(ca) &= (-1)^{\sigma(a)(\hat{\sigma}(b) + \hat{\sigma}(c))}ad(b)d(c) + (-1)^{\sigma(c) + \hat{\sigma}(a)(\hat{\sigma}(b) + \sigma(c))}d(a)d(b)c, \\ d(c)d(ab) &= (-1)^{\hat{\sigma}(c)(\hat{\sigma}(a) + \sigma(b))}d(a)bd(c) + (-1)^{\sigma(a) + \hat{\sigma}(c)(\sigma(a) + \hat{\sigma}(b))}ad(c)d(b). \end{split}$$

After some reductions (17) follows from these.

One easily checks that (18) and (19) are mapped to zero in each of the cases $\sigma(a) = \sigma(b) = 0$, $\sigma(a) = \sigma(b) = 1$ and $\sigma(a) = \hat{\sigma}(b) = 1$. It also follows by small direct computations that (20)-(25) are mapped to zero.

We check that (14)-(25) are mapped to zero by the formulas defining St. Since $\delta(x)$ is mapped to zero this is trivial for all elements except (18), (19), (20) and (24).

By the Cartan formula and $[\frac{|ab|}{2}] = [\frac{|a|}{2}] + [\frac{|b|}{2}] + \sigma(a)\sigma(b)$ one verifies that

$$St_0(ab) = (-u^{p-1})^{\sigma(a)\sigma(b)} St_0(a) St_0(b),$$

$$St_1(ab) = (-u^{p-1})^{\sigma(a)\sigma(b)} (u^{\sigma(b)} St_1(a) St_0(b) + (-u)^{\sigma(a)} St_0(a) St_1(b))$$

such that (18) and (19) are mapped to zero. Lemma 13.1 implies that (20) and (24) are mapped to zero. The diagram commutes by direct verification.

7 The de Rham map and cohomology of $\omega(K)$

In this section K denotes a connected unstable \mathcal{A} -algebra. The de Rham map gives a map from $\ell(K)/(u)$ to the cycles in $\omega(K)$. We give an important criterion which ensures that this map is an isomorphism. The material corresponds to section 8 in [2].

Definition 7.1. Let $I_{\delta} \subseteq \ell(K)$ denote the ideal $I_{\delta} = (\delta(x)|x \in K)$.

Proposition 7.2. There is an \mathbb{F}_p -linear map as follows

$$\Psi: \omega(K) \to \ell(K)$$
 ; $a_0 da_1 \dots da_n \mapsto \delta(a_0) \delta(a_1) \dots \delta(a_n)$

where $a_0, \ldots, a_n \in K$. Its image is the ideal $\operatorname{Im}(\Psi) = I_{\delta}$.

Proof. We must show that Ψ is well defined. The relations arising from (8), (9) and (11) are respected since we have the same relations in $\ell(K)$ with d replaced by δ . We must verify that the following relation is respected:

$$a_0 da_1 \dots da_{i-1} d(a_i a_{i+1}) da_{i+2} \dots da_n =$$

$$(-1)^{(k+\hat{\sigma}(a_i))\sigma(a_{i+1})} a_0 a_{i+1} da_1 \dots da_i da_{i+2} \dots da_n$$

$$+(-1)^{(k+1)\sigma(a_i)} a_0 a_i da_1 \dots da_{i-1} da_{i+1} \dots da_n$$

where $k = |da_1 \dots da_{i-1}|$. This follows if the relation

$$xd(yz) = (-1)^{\hat{\sigma}(y)\sigma(z)}xzd(y) + (-1)^{\sigma(y)}zyd(z)$$

is respected. By relation (17) one sees that it is after some work with the signs. \Box

Definition 7.3. Define the \mathbb{F}_p -algebra $\tilde{\omega}(K)$ as the quotient of $\ell(K)$ by the ideal $I_{\delta} + (u)$. Since $DR(I_{\delta}) \subseteq d\omega(K)$ we may define an \mathbb{F}_p -algebra map Φ by the following diagram where P denotes the canonical projection:

$$\begin{array}{ccc} \ell(K)/(u) & \stackrel{P}{\longrightarrow} & \tilde{\omega}(K) \\ & & \downarrow & & \downarrow \\ & \omega(K) & \longrightarrow & \omega(K)/d\omega(K) \end{array}$$

Since $d \circ DR = 0$ we have in fact defined a morphism $\Phi : \tilde{\omega}(K) \to H^*(\omega(K))$.

Remark 7.4. We have a filtration of $\ell(K)$ by ideals as follows:

$$\ell(K) \supset (u) \supset (u^2) \supset \cdots \supset (u^i) \supset \ldots$$

and
$$(u^i)/(u^{i+1}) = u^i \tilde{\omega}(K)$$
 for $i \geq 1$.

Proposition 7.5. The composite $\Psi \circ d : \omega(K) \to \ell(K)$ is trivial, so we can define Ψ as a map on $\omega(K)/d\omega(K)$. This allows us to consider the composite $\Psi \circ \Phi : \tilde{\omega}(K) \to \ell(K)$. This composite is zero.

Proof. By definition of Ψ we have $\Psi \circ d = 0$. The following rules hold for $b \in K$ and $z = a_0 da_1 \dots da_n \in \tilde{\omega}(K)$:

$$\Psi(\Phi(\phi(b))z) = (-1)^{|\phi(b)|}\phi(b)\Psi(z) \quad , \quad \Psi(\Phi(q(b))z) = (-1)^{|q(b)|}q(b)\Psi(z).$$

In fact the first rule follows from (21) and the second from (22) as one sees by direct verification. By these rules and the observation $\Psi(1) = 0$ the result follows.

Remark 7.6. We can collect the information we have gathered so far in a commutative diagram:

where the composite $\Psi \circ \Phi$ vanishes and $\ker(P) = \operatorname{Im}(\Psi)$.

Theorem 7.7. Assume that the map $\Phi : \tilde{\omega}(K) \to H^*(\omega(K))$ is an isomorphism. Then so is

$$DR: \ell(K)/(u) \to \ker(d: \omega(K) \to \omega(K)).$$

Proof. The diagram is formally the same as the one above Theorem 8.5 of [2]. So the same diagram chase as in the proof of Theorem 8.5 in [2] gives the result. \Box

Proposition 7.8. For any pair $K, L \in \mathcal{K}_0$ the following composite is an isomorphism

$$\tilde{\kappa}: \tilde{\omega}(K) \otimes \tilde{\omega}(L) \xrightarrow{\tilde{\omega}(i) \otimes \tilde{\omega}(j)} \tilde{\omega}(K \otimes L) \otimes \tilde{\omega}(K \otimes L) \xrightarrow{\mu} \tilde{\omega}(K \otimes L)$$

where $i: K \to K \otimes L$; $i(a) = a \otimes 1$ and $j: L \to K \otimes L$; $j(b) = 1 \otimes b$ are the canonical inclusions and μ denotes the product homomorphism. The following diagram commutes.

$$\begin{array}{ccc} \tilde{\omega}(K \otimes L) & \xrightarrow{\Phi_{K \otimes L}} & H^*(\omega(K \otimes L)) \\ & & & & & \\ & & & & \\ & & & & \\ & \tilde{\omega}(K) \otimes \tilde{\omega}(L) & \xrightarrow{\Phi_K \otimes \Phi_L} & H^*(\omega(K)) \otimes H^*(\omega(L)) \end{array}$$

Proof. We verify that $\tilde{\kappa}$ is an isomorphism. For $a \in K$ and $b \in L$ we have that $a \otimes b = (a \otimes 1)(1 \otimes b)$ giving the following relations in $\tilde{\omega}(K \otimes L)$:

$$\phi(a \otimes b) = (1 - \sigma(a)\sigma(b))\phi(a \otimes 1)\phi(1 \otimes b),$$

$$q(a \otimes b) = \hat{\sigma}(b)q(a \otimes 1)\phi(1 \otimes b) + \hat{\sigma}(a)\phi(a \otimes 1)q(1 \otimes b).$$

Since $\phi(a) \otimes 1 \mapsto \phi(a \otimes 1)$, $q(a) \otimes 1 \mapsto q(a \otimes 1)$, $1 \otimes \phi(b) \mapsto \phi(1 \otimes b)$ and $1 \otimes q(b) \mapsto q(1 \otimes b)$ we see that $\tilde{\kappa}$ is surjective. One checks that the following gives a well defined map $\tilde{\gamma}$ in the opposite direction of $\tilde{\kappa}$:

$$\phi(a \otimes b) \mapsto (1 - \sigma(a)\sigma(b))\phi(a) \otimes \phi(b),$$

$$q(a \otimes b) \mapsto \hat{\sigma}(b)q(a) \otimes \phi(b) + \hat{\sigma}(a)\phi(a) \otimes q(b).$$

By checking on generators we see that $\tilde{\gamma} \circ \tilde{\kappa} = id$ so $\tilde{\kappa}$ is injective as well and hence an isomorphism.

The isomorphisms κ and $\tilde{\kappa}$ have corresponding factorizations. The diagram splits in two commuting squares accordingly.

8 Frobenius algebras

Definition 8.1. A Frobenius algebra is a graded commutative \mathbb{F}_p -algebra K equipped with two \mathbb{F}_p -linear maps $\beta, \lambda : K \to K$ satisfying the following conditions:

- K is connected $(K^q = 0 \text{ for } q < 0 \text{ and } K^0 = \mathbb{F}_p)$ and finite dimensional in each degree.
- $|\beta| = 1$, $\beta \circ \beta = 0$ and $\beta(xy) = \beta(x)y + (-1)^{|x|}x\beta(y)$ for all $x, y \in K$.
- $|\lambda x| = p(|x|-1) + 1$, $\lambda x = 0$ when |x| is even, $\lambda x = x$ when |x| = 1 and $\lambda(xy) = \lambda(x)y^p + x^p\lambda(y)$ for all $x, y \in K$.

A morphism of Frobenius algebras $f:(K,\beta,\lambda)\to (K',\beta',\lambda')$ is an \mathbb{F}_p -algebra map $f:K\to K'$ of degree zero such that $f\circ\lambda=\lambda'\circ f$ and $f\circ\beta=\beta'\circ f$. The category of Frobenius algebras is denoted \mathcal{F} .

Remark 8.2. There is a forgetful functor $\mathcal{K}_0 \to \mathcal{F}$.

Definition 8.3. Let $v\mathbb{F}_p$ denote the category of positively graded \mathbb{F}_p -vector spaces which are finite dimensional in each degree. Let $I: \mathcal{F} \to v\mathbb{F}_p$ denote the functor which takes a Frobenius algebra to its augmentation ideal (that is $I(K) = K^{*>0}$). Define the functor $S_{\mathcal{F}}: v\mathbb{F}_p \to \mathcal{F}$ as the left adjoint of I. For $V \in v\mathbb{F}_p$ we call $S_{\mathcal{F}}(V)$ the *free Frobenius algebra* on V.

Remark 8.4. We have $S_{\mathcal{F}}(V \oplus W) = S_{\mathcal{F}}(V) \otimes S_{\mathcal{F}}(W)$. Furthermore there is an explicit description as follows

$$S_{\mathcal{F}}(V) = S_{CA}(V \oplus \beta V \oplus \bigoplus_{i \ge 1, \nu \in \{0,1\}} \beta^{\nu} \lambda^{i} (\beta V^{even} \oplus V^{odd,*>1}))$$

where S_{CA} denotes the free graded commutative algebra functor.

Recall that a sequence of integers $I=(\epsilon_1,s_1,\epsilon_2,s_2,\ldots,\epsilon_k,s_k,\epsilon_{k+1})$ with $s_i\geq 0$ and $\epsilon_i\in\{0,1\}$ is called admissible if $s_i\geq ps_{i+1}+\epsilon_{i+1}$ and $s_k\geq 1$ or if k=0 when $I=(\epsilon)$. The degree of I is defined as $|I|=\sum \epsilon_j+\sum 2s_j(p-1)$ and the excess is defined recursively by $e((\epsilon,s),J)=2s+\epsilon-|J|$. We use the following notation $P^I=\beta^{\epsilon_1}P^{s_1}\beta^{\epsilon_2}P^{s_2}\ldots\beta^{\epsilon_k}P^{s_k}\beta^{\epsilon_{k+1}}$.

Lemma 8.5. If $n \geq 2$ then $H^*B^n\mathbb{F}_p$ is the free Frobenius algebra on the vector space generated by the following set:

$$\{P^I \iota_n | I \text{ is admissible }, e(I) \leq n-2, \epsilon_1 = 0\}.$$

Furthermore $H^*B\mathbb{F}_p$ is the free Frobenius algebra on the vector space generated by the class ι_1 .

Proof. The case n=1 is trivial. Assume that $n \geq 2$ and define the set

$$A(n) = \{I | I \text{ is admisseble }, e(I) \le n - 1, |I| + n \text{ is odd } \}.$$

Remark that if $I \in A(n)$ then $(0, (|I| + n - 1)/2, I) \in A(n)$. To see this write $I \in A(n)$ as $I = (\epsilon, s, I')$. Then $e(I) = 2s + \epsilon - |I'| \le n - 1$ or equivalently $2sp + 2\epsilon - |I| \le n - 1$ such that the sequence (0, (|I| + n - 1)/2, I) is admissible. Its excess is n - 1 and its degree plus n is odd since p - 1 is even.

By Cartan's computation (a special case of [5], Theorem 10.3) we have that $H^*B^n\mathbb{F}_p$ is the free graded commutative algebra on the set

$$B = \{P^J \iota_n | J \text{ is admissible }, e(J) < n \text{ or } (e(J) = n \text{ and } \epsilon_1 = 1)\}.$$

Assume that $P^I\iota_n$ belongs to the set in the statement of the lemma. Then $P^I\iota_n$ and $\beta P^I\iota_n$ belongs to B. By the remark we see that if |I|+n is even then $\beta^{\epsilon}\lambda^i\beta P^I\iota_n\in B$ and if |I|+n is odd then $\beta^{\epsilon}\lambda^iP^I\iota_n\in B$ for $\epsilon=0,1$ and $i\geq 1$.

Conversely, assume that $P^J\iota_n\in B$. If $e(J)\leq n-2$ or e(J)=n-1 and $\epsilon_1=1$ it is clearly one of the generators described in the lemma. It suffices to handle the case $e(J)=n-1, \epsilon_1=0$ since the case $e(J)=n, \epsilon_1=1$ then follows. Write J as J=(0,s,J') where e(J)=2s-|J|'=n-1. Then 2s=n+|J'|-1 such that $P^J\iota_n=\lambda P^{J'}\iota_n$ and $e(J)\leq e(J')$. We can continue this process until the next ϵ equals one or the excess drops below n-1.

Theorem 8.6. The map $\Phi : \tilde{\omega}(K) \to H^*(\omega(K))$ is an isomorphism when K is a free Frobenius algebra.

Proof. It suffices to show this when K is a free Frobenius algebra on a one dimensional vector space. Let v be the generator of this vector space. We first check the case |v|=1 where $K=\Lambda(v)\otimes \mathbb{F}_p[\beta v]$. The idempotents from Remark 4.6 (with x=dv) gives the following splitting:

$$\omega(K) = \bigoplus_{i \in \mathbb{F}_p} e_i \omega(K).$$

For each i we have $de_i = 0$ and $(dv)e_i = ie_i$. Also $\lambda v = v$ such that $d\beta v = 0$. From this we see that $d(v^{\epsilon}(\beta v)^r e_i) = \epsilon i(\beta v)^r e_i$. It follows that $H^*(e_i\omega(K)) = 0$ for $i \neq 0$ and $H^*(e_0\omega(K)) = K$. So $H^*(\omega(K)) = K$ and since $\Phi(\phi(v)) = ve_0$ and $\Phi(q(v)) = \beta v$ we see that Φ is surjective. The relations $\phi(\beta v) = q(v)^p$ and $q(\beta v) = 0$ shows that $\phi(v)$ and q(v) generate $\tilde{\omega}(K)$ so Φ is also injective.

Assume that |v| is even. In the following we write [-] for the functor which takes a set to the vector space it generates. We have

$$K = S_{CA}[v, \beta v, \lambda^i \beta v, \beta \lambda^i \beta v | i \ge 1]$$

and we find that $\omega(K) = K \otimes S_{CA}[dv, d\beta v]$. We change basis such that the differential becomes easier to describe:

$$\omega(K) = S_{CA}[v, dv] \otimes S_{CA}[\beta v, d\beta v] \otimes S_{CA}[\lambda^{i}\beta v - (d\lambda^{i-1}\beta v)^{p-1}\lambda^{i-1}\beta v, \beta\lambda^{i}\beta v|i \geq 1].$$

By the Künneth formula we find that $H^*(\omega(K))$ equals

$$S_{CA}[v^p, v^{p-1}dv] \otimes S_{CA}[\lambda^i \beta v - (d\lambda^{i-1} \beta v)^{p-1} \lambda^{i-1} \beta v, \beta \lambda^i \beta v | i \ge 1].$$

The algebra $\tilde{\omega}(K)$ is generated by the classes $\phi(v)$, $\phi(\lambda^i\beta v)$, q(v) and $q(\lambda^i\beta v)$ where $i\geq 0$. We see that Φ maps these generators to the free generators for the cohomology of $\omega(K)$. Hence Φ is an isomorphism. The case where |v| is odd is similar.

9 A pullback description of the functor ℓ

Proposition 9.1. Let (n_i) be a sequence of positive integers such that the set $\{i|n_i=N\}$ is finite for each N. In particular (n_i) may be a finite sequence. If we let $K=H^*(\prod B^{n_i}\mathbb{F}_p)$ then $\ker(St)=I_\delta$.

Proof. We must show that $St : \ell(K)/I_{\delta} \to \mathbb{F}_p[u] \otimes K$ is injective. The algebra $\ell(K)/I_{\delta}$ has generators $\phi(x)$, q(x) for $x \in K$ together with u and the relations are that ϕ and q are additive and that (18), (19), (20) and (24) equals zero.

For a free Frobenius algebra $K = S_{\mathcal{F}}(V)$ we have listed a set of algebra generators for $\ell(K)/I_{\delta}$ below and we have written how they are mapped by St modulo elements in the ideal (u^{p-1}) . Here $z \in V^1$, $v \in V^{odd,*>1}$ and $w \in V^{even}$ runs through a basis for V and $i \geq 0$:

$$\phi(z) \mapsto 1 \otimes z, \qquad q(z) \mapsto 1 \otimes \beta z,$$

$$\phi(\beta v) \mapsto 1 \otimes (\beta v)^{p}, \qquad q(\beta v) \mapsto -u^{p-2} \otimes \beta P^{(|v|-1)/2} \beta v,$$

$$\phi(\lambda^{i}v) \mapsto 1 \otimes \lambda^{i+1}v, \qquad q(\lambda^{i}v) \mapsto 1 \otimes \beta \lambda^{i+1}v,$$

$$\phi(w) \mapsto 1 \otimes w^{p}, \qquad q(w) \mapsto -u^{p-2} \otimes \beta P^{|w|/2-1}w,$$

$$\phi(\lambda^{i}\beta w) \mapsto 1 \otimes \lambda^{i+1}\beta w, \qquad q(\lambda^{i}\beta w) \mapsto 1 \otimes \beta \lambda^{i+1}\beta w,$$

$$u \mapsto u.$$

We claim that these generators are mapped to algebraically independent elements in $\mathbb{F}_p[u] \otimes K$ when K is the cohomology of a product of Eilenberg-MacLane spaces as stated. It suffices to show this in the case of one single Eilenberg-MacLane space.

The claim is trivial for $K = H^*B\mathbb{F}_p$. Let $K = H^*B^n\mathbb{F}_p$ where $n \geq 2$. We can then cancel the first line in the list above. By Lemma 8.5 we have that K is the free Frobenius algebra on the vector space V with basis $P^I\iota_n$ where I is admissible, $e(I) \leq n-2$ and $\epsilon_1 = 0$.

If |I|+n is odd we must look closer at $\beta P^{(|I|+n-1)/2}\beta P^I\iota_n$. Write I as I=(0,s,I'). We have $e(I)=2s-|I'|\leq n-2$ which implies that (0,(|I|+n-1)/2,1,s,I') is admissible. Its excess equals n-2 and we see that $P^{(|I|+n-1)/2}\beta P^I\iota_n$ is a basis element in V^{even} .

If |I| + n is even we must look at $\beta P^{(|I|+n-2)/2}P^I\iota_n$. As in the odd case we see that $P^{(|I|+n-2)/2}P^I\iota_n$ is a basis element in V^{even} . However there is no β between the first two P-operations from the left.

By the above list of the lowest terms and the description of K as a free Frobenius algebra we now see that the generators are mapped to algebraically independent elements. Especially they are free generators.

Lemma 9.2. Let $a_1, \ldots, a_p \in K$ be elements of odd degree and define the following element in I_{δ} :

$$\Delta(a_1, \dots, a_p) = \sum_{i=2}^p \delta(a_1 a_i) \delta(a_2) \dots \widehat{\delta(a_i)} \dots \delta(a_p).$$

where the hat means that the factor is left out. Then for any permutation $\tau \in \Sigma_p$ one has $\Delta(a_1, \ldots, a_p) = \Delta(a_{\tau(1)}, \ldots, a_{\tau(p)})$. Further the element is mapped as follows by the de Rham map:

$$DR(\Delta(a_1,\ldots,a_p)) = \sum_{i=1}^p a_i da_1 \ldots \widehat{da_i} \ldots da_p.$$

Proof. We first show the invariance under permutation. Since the degree of $\delta(a_i)$ is even it suffices to show that $\Delta(a_1, a_2, \ldots, a_p) = \Delta(a_2, \ldots, a_p, a_1)$. We prove the following more general statement for $n \geq 3$:

$$\sum_{i=2}^{n} \delta(a_1 a_i) \delta(a_2) \dots \widehat{\delta(a_i)} \dots \delta(a_n) =$$

$$\sum_{j=3}^{n} \delta(a_2 a_j) \delta(a_1) \delta(a_3) \dots \widehat{\delta(a_j)} \dots \delta(a_n) - (n-1) \delta(a_2 a_1) \delta(a_3) \dots \delta(a_n).$$

The proof is by induction on n. For n = 3 we have

$$\begin{split} \delta(a_1 a_2) \delta(a_3) + \delta(a_1 a_3) \delta(a_2) &= \delta(a_1 a_2) \delta(a_3) - \delta(a_3 a_1) \delta(a_2) \\ &= 2 \delta(a_1 a_2) \delta(a_3) + \delta(a_2 a_3) \delta(a_1) \\ &= -2 \delta(a_2 a_1) \delta(a_3) + \delta(a_2 a_3) \delta(a_1) \end{split}$$

where we used (17) at the second equality sign. Assume that the formula holds for n-1. Then we have

$$\sum_{i=2}^{n} \delta(a_1 a_i) \delta(a_2) \dots \widehat{\delta(a_i)} \dots \delta(a_n) =$$

$$\left(\sum_{i=2}^{n-1} \delta(a_1 a_i) \delta(a_2) \dots \widehat{\delta(a_i)} \dots \delta(a_{n-1})\right) \delta(a_n) + \delta(a_1 a_n) \delta(a_2) \dots \delta(a_{n-1}) =$$

$$\left(\sum_{j=3}^{n-1} \delta(a_2 a_j) \delta(a_1) \delta(a_3) \dots \widehat{\delta(a_j)} \dots \delta(a_{n-1})\right) \delta(a_n)$$

$$- (n-2) \delta(a_2 a_1) \delta(a_3) \dots \delta(a_{n-1}) \delta(a_n) + \delta(a_1 a_n) \delta(a_2) \dots \delta(a_{n-1}).$$

We have that $\delta(a_1a_n)\delta(a_2) + \delta(a_2a_1)\delta(a_n) = \delta(a_2a_n)\delta(a_1)$ by relation (17) such that the sum of the last two terms above equals

$$-(n-1)\delta(a_2a_1)\delta(a_3)\dots\delta(a_n) + \delta(a_2a_n)\delta(a_1)\dots\delta(a_{n-1})$$

so we recover the formula for n.

We use that $d(a_1a_i) = a_ida_1 - a_1da_i$ to compute the image under the de Rham map:

$$DR(\Delta(a_1, \dots, a_p)) = \sum_{i=2}^{p} d(a_1 a_i) da_2 \dots \widehat{da_i} \dots da_p$$
$$= \sum_{i=2}^{p} a_i da_1 \dots \widehat{da_i} \dots da_p - (p-1)a_1 da_2 \dots da_p$$

which modulo p gives the stated result.

Definition 9.3. For any non negative integer n we let B(n) denote the following set:

$$B(n) = \{(\beta_1, \dots, \beta_p) \in \mathbb{Z}^p | \forall i : \beta_i \ge 0, \beta_1 + \dots + \beta_p = n, \exists i, j : \beta_i \ne \beta_i \}.$$

The cyclic group on p elements C_p act on B(n) by cyclic permutation of coordinates. For $x \in K$ we define the following elements in I_{δ} :

$$D_0^n(x) = -\sigma(x) \sum \Delta(P^{\beta_1}(x), P^{\beta_2}(x), \dots, P^{\beta_p}(x)),$$

$$D_1^n(x) = \hat{\sigma}(x) \sum \delta(P^{\beta_1}(x)P^{\beta_2}(x) \dots P^{\beta_p}(x))$$

where both sums are taken over $\beta \in B(n)/C_p$. Note that $D_0(x)$ is well defined by Lemma 9.2

Lemma 9.4. For any $x \in K$ the following formulas hold in $\omega(K)$:

$$P^{i} \circ DR(\phi(x)) = DR(\phi(P^{i/p}x) + D_{0}^{i}(x)),$$
 (28)

$$P^{i} \circ DR(q(x)) = DR(q(P^{i/p}x) + D_{1}^{i}(x))$$
 (29)

where by convention $P^t = 0$ when t is a rational number which is not a non negative integer.

Proof. We first prove (28). Recall that $DR(\phi(x)) = x^p + \lambda x - x(dx)^{p-1}$. We have $P^i \lambda x = \lambda P^{i/p} x$ by Lemma 13.1 and also $P^i(x^p) = (P^{i/p} x)^p$ so it suffices to prove the following for |x| odd:

$$P^{i}(x(dx)^{p-1}) = (P^{i/p}x)(dP^{i/p}x)^{p-1} - DR(D_{0}^{i}(x)).$$

By the Cartan formula we have

$$P^{i}(x(dx)^{p-1}) = \sum P^{\beta_{1}}(x)dP^{\beta_{2}}(x)\dots dP^{\beta_{p}}(x)$$

where we sum over the tuples $(\beta_1, \ldots, \beta_p)$ with $\sum \beta_j = i$. The cyclic group C_p acts on the set of such tuples and an orbit has length 1 or p. Arranging the terms according to this the result follows by the definition of $D_0^i(x)$ and Lemma 9.2.

For the proof of (29) recall that $DR(q(x)) = x^{p-1}dx + \beta\lambda x$. We have $P^i(\beta\lambda x) = \beta\lambda(P^{i/p}x) + (\beta P^{(i-1)/p}x)^p$ by Lemma 13.1 so when |x| is odd we are done. For |x| even we must show that

$$P^{i}(x^{p-1}dx) = (P^{i/p}x)^{p-1}dP^{i/p}x + DR(D_{1}^{i}(x)).$$

This follows by the Cartan formula and a similar argument on orbits as the above. \Box

Theorem 9.5. For any $K \in \mathcal{K}_0$ there is an \mathcal{A} -module structure on $\ell(K)$ such that ℓ becomes a functor $\ell: \mathcal{K}_0 \to \mathcal{K}$. The explicit formulas for the action are as follows where $x \in K$, $n = \lfloor |x|/2 \rfloor$ and $i \geq 0$. Firstly, the action on $\phi(x)$ is given by:

$$\begin{split} P^i\phi(x) = &D_0^i(x) + \sum_t \binom{(p-1)(n-t)}{i-pt} u^{(p-1)(i-pt)}\phi(P^tx), \\ \beta\phi(x) = &u^{\hat{\sigma}(x)}(q(x) - \delta(x)^{p-2}\delta(x\beta x)). \end{split}$$

Secondly, the action on q(x) is given by:

$$\begin{split} P^{i}q(x) = & D_{1}^{i}(x) + \sum_{t} \binom{(p-1)(n-t) + \sigma(x)}{i-pt} u^{(p-1)(i-pt)} q(P^{t}x) \\ - & (-1)^{\sigma(x)} \sum_{t} \binom{(p-1)(n-t) - 1 + \sigma(x)}{i-pt-1} u^{(p-1)(i-pt)-1 + (2-p)\sigma(x)} \phi(\beta P^{t}x), \\ \beta q(x) = & -\delta(x^{p-1}\beta x). \end{split}$$

Thirdly, the actions on $\delta(x)$ and u are as follows:

$$P^{i}\delta(x) = \delta(P^{i}x), \quad \beta\delta(x) = -\delta(\beta x), \quad P^{1}u = u^{p}, \quad \beta u = 0.$$

The maps DR and St becomes A-linear such that we have a commutative diagram in K:

$$\ell(K) \xrightarrow{St} R(K)$$

$$DR \downarrow \qquad \qquad p_1 \downarrow$$

$$\ker(d) \xrightarrow{p_2} K$$

If $K = H^*(\prod B^{n_i}\mathbb{F}_p)$ where (n_i) is a (possible finite) sequence of positive integers satisfying that the set $\{i|n_i=N\}$ is finite for each N, then the diagram is a pullback square.

Proof. We first prove that we have a pullback when K is a product of Eilenberg-MacLane spaces as stated. By Proposition 7.8 and Theorem 8.6 the map Φ is an isomorphism. So by Theorem 7.7 the kernel of DR is the ideal $(u) \subseteq \ell(K)$. The kernel of p_1 is the ideal $(u \otimes 1) \subseteq R(K)$ and it suffices to show that the restriction of the Steenrod map to these kernels $St|: (u) \to (u \otimes 1)$ is an isomorphism. It is surjective since St is surjective and $St(u) = u \otimes 1$. By Proposition 9.1 we have $\ker(St) = I_{\delta}$ such that $\ker(St|) = (u) \cap I_{\delta}$ which is trivial because of the relation $\delta(x)u = 0$ in $\ell(K)$. Hence St| is also injective.

In the Eilenberg-MacLane case the pullback defines an \mathcal{A} -module structure on $\ell(K)$. By Theorem 5.2 and Lemma 9.4 we see that the stated formulas describe this action. A standard argument using the fact that $B^n\mathbb{F}_p$ classifies degree n cohomology together with naturality takes care of the statements for general $K \in \mathcal{K}$.

10 Homotopy orbits of S^1 -spaces

In this section we list some results on homotopy orbits of S^1 -spaces. They are all similar to results for p=2 considered in [2] and we often refer to the

proofs given there. In the entire section Y denotes an S^1 -space. We write C_n for the cyclic group of order n. We let u of degree |u|=2 and v of degree |v|=1 denote algebra generators as follows: $H^*S^1=\Lambda(v),\ H^*BS^1=\mathbb{F}_p[u]$ and $H^*BC_{p^n}=\Lambda(v)\otimes\mathbb{F}_p[u]$.

Proposition 10.1. The fibration $Y \to ES^1 \times_{S^1} Y \to BS^1$ has the following Leray-Serre spectral sequence:

$$E_2^{**} = H^*(BS^1) \otimes H^*(Y) \Rightarrow H_{S^1}^*(Y).$$

The differential in the E_2 -term is given by

$$d_2: H^*(Y) \to uH^*(Y)$$
 ; $d_2(y) = ud(y)$

where d is the action differential.

Proof. Similar to the proof of [2] Proposition 3.3.

Definition 10.2. Define the spaces $E_n Y$ for $n = 0, 1, 2, \ldots, \infty$ by

$$\begin{array}{rcl} E_n Y & = & ES^1 \times_{C_{p^n}} Y & , & n < \infty \\ E_{\infty} Y & = & ES^1 \times_{S^1} Y. \end{array}$$

For nonnegative integers n and m with m > n define the maps

$$q_m^n: H^*E_mY \to H^*E_nY$$
 , $\tau_n^m: H^*E_nY \to H^*E_mY$

by letting q_m^n be the map induced by the quotient map and τ_n^m be the transfer map. Also define $q_\infty^n: H^*E_\infty Y \to H^*E_n Y$ as the map induced by the quotient.

The following theorem is inspired by a result of Tom Goodwillie which can be found in [4] p. 279. We use it to give a convenient definition of the S^1 -transfer.

Theorem 10.3. There is a commutative diagram as follows for any $m \geq 1$.

$$E_{m}Y \xrightarrow{Q} E_{\infty}Y$$

$$pr_{1} \downarrow \qquad pr_{1} \downarrow$$

$$BC_{p^{m}} \xrightarrow{Bj} BS^{1}$$

$$(30)$$

Here Q denotes the quotient map and $j: C_{p^m} \hookrightarrow S^1$ the inclusion. The diagram gives rise to an isomorphism.

$$\Theta: H^*(BC_{p^m}) \otimes_{H^*(BS^1)} H^*(E_{\infty}Y) \cong H^*(E_mY) \quad ; \quad x \otimes y \mapsto pr_1^*(x)q_{\infty}^m(y)$$

The transfer map $\tau_m^{m+1}: H^*E_mY \to H^*E_{m+1}Y$ is zero on elements of the form $\Theta(1 \otimes y)$ and the identity on elements of the form $\Theta(v \otimes y)$. We get an isomorphism

$$\operatorname{colim} H^* E_m Y = v H^* E_{\infty} Y \cong \widetilde{H}^* (\Sigma(E_{\infty} Y)_+).$$

Proof. Similar to the proof of [2] Theorem 4.2.

Definition 10.4. For any non negative integer n the S^1 -transfer

$$\tau_n^{\infty}: H^*E_nY \to H^*E_{\infty}Y$$

is defined as the composite

$$H^*E_nY \longrightarrow \operatorname{colim} H^*E_mY \stackrel{v^{-1}}{\longrightarrow} H^*E_{\infty}Y$$

where the direct limit is over the transfer maps τ_n^m . Note that $|\tau_n^{\infty}| = -1$.

Definition 10.5. Let θ_0 denote the S^1 -equivariant map

$$\theta_0: S^1 \times Y_0 \to ES^1 \times Y \quad ; \quad (z,y) \mapsto (ze,zy)$$

and let θ_n for $n=1,2,\ldots,\infty$ be the maps one obtains by passing to the quotients

$$\theta_n: S^1/C_{p^n} \times Y \to E_m Y \quad , \quad m < \infty$$

$$\theta_{\infty}: * \times Y \to E_{\infty} Y.$$

Proposition 10.6. For non negative integers m and n with n < m the following squares commutes.

$$H^*E_nY \xrightarrow{\theta_n^*} H^*(S^1 \times Y) \qquad H^*E_nY \xrightarrow{\theta_n^*} H^*(S^1 \times Y)$$

$$q_m^n \uparrow \qquad q_m^n \otimes 1 \uparrow \qquad \tau_n^m \downarrow \qquad \tau_n^m \otimes 1 \downarrow$$

$$H^*E_nY \xrightarrow{\theta_m^*} H^*(S^1 \times Y) \qquad H^*E_nY \xrightarrow{\theta_m^*} H^*(S^1 \times Y)$$

There are also commutative squares

$$H^*E_nY \xrightarrow{\theta_n^*} H^*(S^1 \times Y) \qquad H^*E_nY \xrightarrow{\theta_n^*} H^*(S^1 \times Y)$$

$$q_{\infty}^n \uparrow \qquad pr_2^* \uparrow \qquad \tau_n^{\infty} \downarrow \qquad \tau_n^{\infty} \downarrow$$

$$H^*E_{\infty}Y \xrightarrow{\theta_{\infty}^*} H^*Y \qquad H^*E_{\infty}Y \xrightarrow{\theta_{\infty}^*} H^*Y$$

where $\theta_{\infty}^* = q_{\infty}^0$ is the map induced by the inclusion of the fiber, and the transfer on the right hand side is given by $1 \otimes y \mapsto 0$ and $v \otimes y \mapsto y$.

Proof. Similar to the proof of [2] Proposition 4.6.

Proposition 10.7. Frobenius reciprocity holds for any $n \geq 0$:

$$\tau_n^{\infty}(q_{\infty}^n(x)y) = (-1)^{|x|} x \tau_n^{\infty}(y).$$

Furthermore the following composition formulas hold.

$$\tau_0^{\infty} \circ q_{\infty}^0 = 0$$
 , $q_{\infty}^0 \circ \tau_0^{\infty} = d$.

Proof. Similar to the proof of [2] Proposition 4.7, Proposition 4.8. \square

Proposition 10.8. There is always an inclusion $\operatorname{Im}(q_{\infty}^0) \subseteq \ker(d)$. If we have equality $\operatorname{Im}(q_{\infty}^0) = \ker(d)$ then the Leray-Serre spectral sequence of the fibration $Y \to ES^1 \times_{S^1} Y \to BS^1$ collapses at the E_3 -term.

Proof. By Proposition 10.7 we have $d \circ q_{\infty}^0 = q_{\infty}^0 \circ \tau_0^{\infty} \circ q_{\infty}^0 = 0$. The collapse statement follows by Proposition 10.1.

Definition 10.9. Put $\zeta_p = exp(2\pi i/p)$ and define the map

$$f'_Y: S^1 \times Y \quad \to \quad ES^1 \times Y^p$$

$$(z,y) \quad \mapsto \quad (ze, zy, \zeta_p zy, \zeta_p^2 zy, \dots, \zeta_p^{p-1} zy).$$

We let C_p act on the space to the left by $\zeta_p \cdot (z, y) = (\zeta_p z, y)$ and on the space to the right by $\zeta_p \cdot (e, y_1, \dots, y_p) = (\zeta_p e, y_2, \dots, y_p, y_1)$. Then the above map is C_p -equivariant. Passing to the quotients we get a map

$$f_Y: S^1/C_p \times Y \to ES^1 \times_{C_n} Y^p$$

Note that this map is natural in Y with respect to C_p -equivariant maps.

Recall the followings facts on the order p cyclic construction [6], [5] and [7]. For any space X with homology of finite type there is a natural isomorphism

$$H^*(ES^1 \times_{C_p} X^p) \cong H^*(C_p; H^*(X)^{\otimes p})$$

where C_p acts on $H^*(X)^{\otimes p}$ by cyclic permutation with the usual sign convention. For a homogeneous element $y \in H^*X$ the C_p invariant $y^{\otimes p}$ defines an element $1 \otimes y^{\otimes p}$ in the zeroth cohomology group of C_p . Let $N = 1 + \zeta_p + \zeta_p^2 + \cdots + \zeta_p^{p-1}$ be the norm element in the group ring $\mathbb{F}_p[C_p]$. If $x_1, \ldots, x_p \in H^*X$ are homogeneous elements, which are not all equal, then the invariant $Nx_1 \otimes \cdots \otimes x_p$ also defines an element $1 \otimes Nx_1 \otimes \cdots \otimes x_p$ in the zeroth cohomology group of C_p .

Theorem 10.10. The following formula holds where $\delta_{i,j}$ denotes the Kronecker delta:

$$f_{\mathbf{v}}^*(1\otimes y^{\otimes p}) = 1\otimes y^p + v\otimes y^{p-1}dy + \delta_{p,3}v\otimes\beta\lambda y.$$

Proof. We write Y_0 for the space Y with trivial S^1 -action. We first prove the theorem in the special case $Y = Y_0$. Here the differential is zero. There is a factorization

$$f_{Y_0}: S^1/C_p \times Y_0 \ \xrightarrow{\ i \times 1 \ } \ ES^1/C_p \times Y_0 \ \xrightarrow{\ 1 \times \Delta \ } \ ES^1 \times_{C_p} Y_0^p.$$

By this and the formula for the Steenrod diagonal, [7] p. 119 & Errata, the result follows.

Next we prove the following formula for a general S^1 -space:

$$f_Y^*(1 \otimes Nx_1 \otimes \dots \otimes x_p) = v \otimes d(x_1 \dots x_p). \tag{31}$$

There is a commutative diagram as follows:

$$H^*(S^1/C_p \times Y) \xleftarrow{f_Y^*} H^*(ES^1 \times_{C_p} Y^p)$$

$$\tau_0^1 \otimes 1 \uparrow \qquad \qquad \tau_0^1 \uparrow$$

$$H^*(S^1 \times Y) \xleftarrow{f_Y'^*} H^*(ES^1 \times Y^p)$$

The lower horizontal map is given by

$$f_Y'^*(1 \otimes x_1 \otimes \cdots \otimes x_p) = \prod_{i=1}^p (1 \otimes x_i + v \otimes dx_i)$$

as seen by the factorization

$$f'_Y: S^1 \times Y \xrightarrow{\Delta_2} (S^1 \times Y)^2 \xrightarrow{pr_1 \times \Delta_p} S^1 \times (S^1 \times Y)^p$$

$$\xrightarrow{i \times \eta^p} ES^1 \times Y^p \xrightarrow{1 \times 1 \times \zeta_p \times \dots \times \zeta_p^{p-1}} ES^1 \times Y^p.$$

The norm class is hit by the transfer and by finding the coefficient to v in the above formula (31) follows.

Finally we prove the Theorem in the general case. Because of the degrees $f_{S^1}^*(1\otimes v^{\otimes p})=0$. The two projection maps $pr_1:S^1\times Y_0\to S^1$ and $pr_2:S^1\times Y_0\to Y_0$ are S^1 -equivariant. Thus we can use naturality together with the case $Y=Y_0$ and the above equation to find the equations below

$$f_{S^1 \times Y_0}^* (1 \otimes (1 \otimes y)^{\otimes p}) = 1 \otimes 1 \otimes y^p + \delta_{p,3} v \otimes 1 \otimes \beta \lambda y,$$

$$f_{S^1 \times Y_0}^* (1 \otimes (v \otimes 1)^{\otimes p}) = f_{S^1 \times Y_0}^* (1 \otimes (v \otimes dy)^{\otimes p}) = 0.$$

The action map $\eta: S^1 \times Y_0 \to Y$ is also an S^1 -equivariant map, hence by naturality we have a commutative diagram

$$S^{1}/C_{p} \times (S^{1} \times Y_{0}) \xrightarrow{f_{S^{1} \times Y_{0}}} ES^{1} \times_{C_{p}} (S^{1} \times Y_{0})^{p}$$

$$\downarrow^{1 \times \eta} \qquad \qquad \downarrow^{1 \times \eta^{p}} \downarrow$$

$$S^{1}/C_{p} \times Y \xrightarrow{f_{Y}} ES^{1} \times_{C_{p}} Y^{p}$$

We compute the pull back of the class $1 \otimes y^{\otimes p}$ to the cohomology of the upper left corner. First we find

$$(1 \times \eta^p)^* (1 \otimes y^{\otimes p}) = 1 \otimes (1 \otimes y + v \otimes dy)^{\otimes p} = 1 \otimes (1 \otimes y)^{\otimes p} + 1 \otimes (v \otimes dy)^{\otimes p} + \sum_{i=1}^{p-1} 1 \otimes N(1 \otimes y)^{\otimes i} \otimes (v \otimes dy)^{\otimes (p-i)}.$$

By (31) we can compute $f_{S^1 \times Y_0}^*$ applied to the norm element terms. Only the i = p - 1 term contributes.

$$f_{S^1 \times Y_0}^* (1 \otimes N(1 \otimes y)^{\otimes (p-1)} \otimes (v \otimes dy)) = v \otimes d_{S^1 \times Y_0}(v \otimes y^{p-1} dy)$$
$$= v \otimes (d_{S^1}(v) \otimes y^{p-1} dy + v \otimes d_{Y_0}(y^{p-1} dy))$$
$$= v \otimes 1 \otimes y^{p-1} dy$$

Altogether we have

$$(1 \otimes \eta^*) \circ f_Y^* (1 \otimes y^{\otimes p}) = f_{S^1 \times Y_0}^* \circ (1 \times \eta^p)^* (1 \otimes y^{\otimes p})$$
$$= f_{S^1 \times Y_0}^* (1 \otimes (1 \otimes y)^{\otimes p}) + v \otimes 1 \otimes y^{p-1} dy.$$

We now apply $1 \otimes \gamma^*$ on both sides (for the map γ , see the beginning of §3) and the result follows.

11 Construction of classes in string cohomology from classes in ordinary cohomology

In this section X denotes a connected space.

Definition 11.1. Put $\zeta_p = \exp(2\pi i/p)$ and define evaluation maps as follows:

$$ev_0: \Lambda X \to X$$
 ; $\gamma \mapsto \gamma(1)$,
 $ev_1: ES^1 \times_{C_p} \Lambda X \to ES^1 \times_{C_p} X^p$; $[e, \gamma] \mapsto [e, \gamma(1), \gamma(\zeta_p), \dots, \gamma(\zeta_p^{p-1})].$

Definition 11.2. The classes $u, f(x), g(x), \delta(x) \in H_{S^1}^*(\Lambda X)$ for $x \in H^*X$ are defined by

$$f(x) = \tau_1^{\infty} \circ ev_1^*(v \otimes x^{\otimes p}), \qquad g(x) = \tau_1^{\infty} \circ ev_1^*(1 \otimes x^{\otimes p}),$$

$$\delta(x) = \tau_0^{\infty} \circ ev_0^*(x), \qquad u = \tau_1^{\infty} \circ ev_1^*(vu \otimes 1^{\otimes p}).$$

Theorem 11.3. Let $i_0: X \hookrightarrow \Lambda X$ denote the constant loop inclusion and let i_{∞} be the corresponding map of S^1 -homotopy orbits. There is a commutative diagram as follows

$$H^{*}(ES^{1} \times_{S^{1}} \Lambda X) \xrightarrow{i_{\infty}^{*}} H^{*}(BS^{1} \times X)$$

$$q_{\infty}^{0} \downarrow \qquad \qquad \downarrow \qquad (32)$$

$$H^{*}(\Lambda X) \xrightarrow{i_{0}^{*}} H^{*}(X)$$

and an inclusion $\operatorname{Im}(q_{\infty}^0) \subseteq \ker(d: H^*(\Lambda X) \to H^*(\Lambda X))$. The constructed classes are mapped as follows under i_{∞}^* .

$$i_{\infty}^{*}(f(x)) = \hat{\sigma}(x)St_{0}(x) + \sigma(x)(-1)^{m}m!u^{m}St_{0}(x),$$

$$i_{\infty}^{*}(g(x)) = \hat{\sigma}(x)St_{1}(x) + \sigma(x)(-1)^{m}m!u^{m-1}St_{1}(x),$$

$$i_{\infty}^{*}(\delta(x)) = 0 \quad and \quad i_{\infty}^{*}(u) = u \otimes 1.$$

Here m = (p-1)/2. Under q_{∞}^0 the images of the classes are as follows.

$$q_{\infty}^{0}(f(x)) = \hat{\sigma}(x)e(x^{p}),$$

$$q_{\infty}^{0}(g(x)) = \hat{\sigma}(x)e(x^{p-1}dx) + \sigma(x)\delta_{p,3}e(\beta\lambda x),$$

$$q_{\infty}^{0}(\delta(x)) = e(dx) \quad and \quad q_{\infty}^{0}(u) = 0.$$

Here $\delta_{p,3} = 1$ for p = 3 and zero otherwise.

Proof. A commutative diagram of spaces gives the diagram (32) and Proposition 10.7 gives the stated inclusion.

We check the formulas involving i_{∞}^* . There is a commutative diagram as follows where $\Delta: X \to X^p$ is the diagonal and i_1 is the map of C_p -homotopy orbits induced by i_0 .

The horizontal map with no label is the induced in cohomology of the map $\gamma \mapsto (\gamma(1), \gamma(\zeta_p), \dots, \gamma(\zeta_p^{p-1}))$. A homotopy commutative square of spaces shows that the upper square commutes and it is obvious that the other two are commutative. We see that $i_{\infty}^*(u) = u \otimes 1$ as stated.

The composite $ev_1 \circ i_1$ is the diagonal Δ_1 . Its induced in cohomology is the Steenrod diagonal Δ_1^* given by the following ([7] p. 119 & Errata):

$$\nu(q)\Delta_1^*(1 \otimes x^{\otimes p}) = \sum_i (-1)^i u^{m(q-2i)} \otimes P^i x + \sum_i (-1)^i v u^{m(q-2i)-1} \otimes \beta P^i x$$

where q = |x| and $\nu(q) = (m!)^q (-1)^{m(q^2+q)/2}$. From this formula and the lower part of the diagram we see that

$$\nu(q)i_{\infty}^{*}(f(x)) = \sum_{i} (-1)^{i} u^{m(q-2i)} \otimes P^{i}x = (-1)^{[q/2]} u^{\sigma(x)m} St_{0}(x),$$

$$\nu(q)i_{\infty}^{*}(g(x)) = \sum_{i} (-1)^{i} u^{m(q-2i)-1} \otimes \beta P^{i}x = (-1)^{[q/2]} u^{\sigma(x)(m-1)} St_{1}(x).$$

By [7] Lemma 6.3 one has $(m!)^2=(-1)^{m+1} \mod p$ and from this one sees that $\nu(q)^{-1}(-1)^{[q/2]}=1$ for q even and $\nu(q)^{-1}(-1)^{[q/2]}=(-1)^m m!$ for q odd. Hence we have verified the formulas for $i_\infty^*(f(x))$ and $i_\infty^*(g(x))$.

By the left part of the diagram we see that

$$\delta(x) = \tau_1^{\infty} \circ ev_1^* \circ Tr_0^1(x \otimes 1 \otimes \cdots \otimes 1).$$

The composite $\Delta_1^* \circ Tr_0^1$ is zero by [7] Lemma 4.1 so $i_\infty^*(\delta(x)) = 0$.

Finally we check the formulas for q_{∞}^0 . It follows directly from Proposition 10.7 that $\delta(x)$ is mapped as stated and clearly u is mapped to zero. For the classes f(x) and g(x) we use Proposition 10.6:

$$q_{\infty}^0 \circ \tau_1^{\infty} \circ ev_1^* = \tau_1^{\infty} \circ \theta_1^* \circ ev_1^* = \tau_1^{\infty} \circ (ev_1 \circ \theta_1)^*.$$

Note that $ev_1 \circ \theta_1$ equals the composite

$$S^1/C_p \times \Lambda X \xrightarrow{f_{\Lambda X}} ES^1 \times_{C_p} (\Lambda X)^p \xrightarrow{1 \times ev_0^p} ES^1 \times_{C_p} X^p$$

where $f_{\Lambda X}$ is the map from Definition 10.9. Thus we have

$$q_{\infty}^{0} \circ \tau_{1}^{\infty} \circ ev_{1}^{*} = \tau_{1}^{\infty} \circ f_{\Lambda X}^{*} \circ (1 \times ev_{0}^{p})^{*}.$$

From this and Theorem 10.10 we get the stated results.

Proposition 11.4. The following diagram is a pullback square.

$$\begin{array}{ccc} H^*(ES^1 \times_{S^1} \Lambda B\mathbb{F}_p) & \xrightarrow{i_{\infty}^*} & \mathbb{F}_p[u] \otimes H^*B\mathbb{F}_p \\ & & \downarrow & & \downarrow \\ & & \ker(d) & \xrightarrow{i_0^*} & H^*BF_p \end{array}$$

Proof. In the proof of Proposition 4.9 we saw that $\sqcup j_n : \sqcup BF_p(n) \to \Lambda B\mathbb{F}_p$ was both an S^1 -map and a homotopy equivalence. So the induced map of S^1 -homotopy orbits $(\sqcup j_n)_{\infty}$ is a weak homotopy equivalence. The maps in the diagram have nice descriptions in terms of this equivalence since there are commutative diagrams as follows where Q denotes quotient maps.

Hence it suffices to show that the following diagram is a pullback where $d_{(n)}$ denotes the differential on $H^*B\mathbb{F}_p(n)$.

We have $H^*(ES^1 \times_{S^1} B\mathbb{F}_p(n)) \cong \ker(d_{(n)})$ for $n \neq 0$ since here the Leray-Serre spectral sequence has $E_3^{i,*} = 0$ for $i \geq 1$. The result follows.

As indicated by Theorem 11.3 above it turns out that when |x| is odd then both f(x) and g(x) can be written as a product of some power of u with another class. This was not the case for p=2 as described in [2]. We construct new classes to get around this difficulty.

Theorem 11.5. Let $x \in H^*X$ be a cohomology class of odd degree. Then there exists classes $\phi(x), q(x) \in H^*(ES^1 \times_{S^1} \Lambda X)$ with $|\phi(x)| = p(|x| - 1) + 1$ and |q(x)| = p(|x| - 1) + 2 such that

$$i_{\infty}^*(\phi(x)) = St_0(x), \quad q_{\infty}^0(\phi(x)) = \lambda x - x(dx)^{p-1},$$

 $i_{\infty}^*(q(x)) = St_1(x), \quad q_{\infty}^0(q(x)) = \beta \lambda x.$

Proof. It suffices to prove the theorem when $X = B^n \mathbb{F}_p$ for odd $n \geq 1$. The general case then follows by defining $\phi(x) = (1 \times_{S^1} \Lambda h)^* \phi(\iota_n)$ and $q(x) = (1 \times_{S^1} \Lambda h)^* q(\iota_n)$ where |x| = n and $h: X \to B^n \mathbb{F}_p$ has $h^*(\iota_n) = x$.

For n=1 we have $St_0(\iota_1)=1\otimes\iota_1$ and $St_1(\iota_1)=1\otimes\beta\iota_1$ so here the result follows from Proposition 11.4.

Assume that n=2r+1 where $r\geq 1$. By Proposition 10.1, Theorem 4.1 and Theorem 8.6 the E_3 -term of the Leray-Serre spectral sequence for the fibration $\Lambda B^n \mathbb{F}_p \to ES^1 \times_{S^1} \Lambda B^n \mathbb{F}_p \to BS^1$ has the following form:

$$E_3 \cong \operatorname{Im}(d) \oplus (\mathbb{F}_p[u] \otimes \tilde{\omega}(K))$$

where $K = H^*B^n\mathbb{F}_p$. Here u has bidegree (2,0) and an element y in $\mathrm{Im}(d)$ or $\tilde{\omega}(K)$ has bidegree (0,|y|). Define $s:BS^1\to ES^1\times_{S^1}\Lambda B^n\mathbb{F}_p$ such that $pr_1\circ s=id$ by choosing a constant loop. By s^* we see that the vertical line (*,0) survives to E_{∞} .

Up to dimension 2rp + 2p - 1 the only nonzero vertical lines are (*,0), (*,2rp+1), (*,2rp+2) and (*,2rp+2p-1) corresponding to the classes u, $\phi(\iota_n)$, $q(\iota_n)$ and $q(\beta\iota_n)$ respectively. Hence we can define $\phi(\iota_n)$ and $q(\iota_n)$ by

$$q_0^{\infty}(\phi(\iota_n)) = \lambda \iota_n - \iota_n (d\iota_n)^{p-1},$$

$$q_0^{\infty}(q(\iota_n)) = \beta \lambda \iota_n \text{ and } s^*(q(\iota_n)) = 0.$$

Since $|f(\iota_n)| = 2rp + p$ and $|g(\iota_n)| = 2rp + p - 1$ we see that $f(\iota_n) = C_1 u^m \phi(\iota_n)$ and $g(\iota_n) = C_2 u^{m-1} q(\iota_n)$ where $C_1, C_2 \in \mathbb{F}_p$ and m = (p-1)/2 as before. By Theorem 11.3 we conclude that

$$C_1 u^m i_{\infty}^* (\phi(\iota_n)) = (-1)^m m! u^m St_0(\iota_n),$$

$$C_2 u^{m-1} i_{\infty}^* (q(\iota_n)) = (-1)^m m! u^{m-1} St_1(\iota_n)$$

and the result follows.

Definition 11.6. For $x \in H^*X$ of even degree we define $\phi(x) = f(x)$ and q(x) = g(x).

12 String cohomology and the functor ℓ

In this section we prove the main result of this paper.

Theorem 12.1. Let X be a connected space which has finite dimensional mod p homology in each degree. Then there is a morphism of unstable A-algebras

$$\psi: \ell(H^*X) \to H^*(ES^1 \times_{S^1} \Lambda X)$$

which sends $\phi(x)$, q(x), $\delta(x)$ for $x \in H^*X$ and u to the constructed classes with the same names. The morphism is natural in X. If both of the maps

$$e: \omega(H^*X) \to H^*(\Lambda X)$$
 , $\Phi: \tilde{\omega}(H^*X) \to H^*(\omega(H^*X))$

are isomorphisms then so is ψ . In particular, when (n_i) is a sequence (possibly finite) of positive integers such that the set $\{i|n_i=N\}$ is finite for each N and $X=\prod B^{n_i}\mathbb{F}_p$, then ψ is an isomorphism.

Proof. Assume that both e and Φ are isomorphisms and put $K = H^*X$. By Theorem 7.7 we have that DR surjects $\ker(d)$ and from the results in Section 11 we see that $\operatorname{Im}(DR) \subseteq \operatorname{Im}(q_{\infty}^0)$. Hence $\operatorname{Im}(q_{\infty}^0) = \ker(d)$. It then follows

from Proposition 10.8 that the Leray-Serre spectral sequence associated to the fibration $\Lambda X \to ES^1 \times_{S^1} \Lambda X \to BS^1$ collapses at the E_3 -term:

$$E_{\infty} = E_3 \cong \ker(d) \oplus u\tilde{\omega}(K) \oplus u^2\tilde{\omega}(K) \oplus \dots$$
 (33)

By Remark 7.4 there is a filtration of $\ell(K)$ which associated graded object is also (33). If we fix a dimension the filtration is finite and we conclude that $\ell(K)$ and $H^*(ES^1 \times_{S^1} \Lambda X)$ have the same dimension in each degree. Hence it suffices to show that the map ψ in the statement is a well defined morphism which is surjective.

The constructed classes are algebra generators for $H^*(ES^1 \times_{S^1} \Lambda X)$ by the collapse, and the formulas for their images under i_{∞}^* given in Section 11 shows that $\operatorname{Im}(i_{\infty}^*) = R(K)$. Hence we have a commutative diagram as follows:

$$H^*(ES^1 \times_{S^1} \Lambda X) \xrightarrow{i_{\infty}^*} R(K)$$

$$\downarrow q_{\infty}^0 \downarrow \qquad \qquad p_1 \downarrow \\ \ker(d) \xrightarrow{p_2} K$$

The kernel of p_1 is the ideal $(u \otimes 1)$ and $i_{\infty}^*(u) = u \otimes 1$. Since $u \in \ker(q_{\infty}^0)$ and i_{∞}^* is surjective we conclude that the restriction $i_{\infty}^*| : \ker(q_{\infty}^0) \to \ker(p_1)$ is surjective. Hence we have a surjection into the pullback.

We now restrict to the case where X is a product of Eilenberg-MacLane spaces as in the last part of the statement. Here e is an isomorphism by Proposition 3.7 and Theorem 4.1 and Φ is an isomorphism by Proposition 7.8 and Theorem 8.6.

The above surjection into the pullback together with Theorem 9.5 gives us a surjective morphism $\psi': H^*(ES^1 \times_{S^1} \Lambda X) \to \ell(K)$ which is then an isomorphism. By definition it has inverse ψ .

By the fact that $B^n\mathbb{F}_p$ classifies degree n cohomology and naturality of the constructed classes, we can now conclude that the defining relations for $\ell(K)$ are universal for the constructed classes. Hence ψ is a well defined morphism in general.

In the case where e and Φ are isomorphisms, the collapse ensures that ψ is surjective and hence an isomorphism.

Corollary 12.2. Let X be a connected space and assume that H^*X is a polynomial algebra on a set of even dimensional generators. Assume also that H_iX is finite for each i. Then ψ is an isomorphism.

Proof. If K is zero in odd degrees then $\omega(K)$ is the ordinary de Rham complex $\Omega(K|\mathbb{F}_p)$. Furthermore, $\tilde{\omega}(K)$ is the de Rham complex $\Omega(\bar{K}|\mathbb{F}_p)$ where \bar{K} is the algebra defined by $\bar{K}^{np} = K^n$ and $\bar{K}^m = 0$ for $m \neq 0 \mod p$. The map Φ is the Cartier map.

The Eilenberg-Moore spectral sequence for $H^*(\Lambda X)$ has Hochschild homology of H^*X as its E_2 -term and it collapses since the algebra generators sit in $E_2^{0,*}$ and $E_2^{-1,*}$. By the Hochschild-Konstant-Rosenberger theorem Hochschild homology is isomorphic to the de Rham complex and one concludes that e is an isomorphism. The Cartier map Φ is also an isomorphism.

Remark 12.3. Theorem 12.1 respects products in the following sense. Assume that X and Y are connected spaces with mod p homology of finite type and that e_X , Φ_X , e_Y , Φ_Y are isomorphisms. Then $e_{X\times Y}$ and $\Phi_{X\times Y}$ are isomorphisms and $\psi_{X\times Y}$ is an isomorphism.

13 Appendix: Unstable A-algebras

In this appendix we prove Proposition 3.4. We shall need the following result.

Lemma 13.1. For any unstable A-algebra K and $x \in K$ the following equations hold.

$$P^{i}\lambda x = \begin{cases} \lambda(P^{\frac{i}{p}}x) &, & i = 0 \text{ mod } p\\ 0 &, & otherwise \end{cases}$$
 (34)

$$P^{i}\beta\lambda x = \begin{cases} \beta\lambda(P^{\frac{i}{p}}x) &, & i = 0 \text{ mod } p\\ (\beta P^{\frac{i-1}{p}}x)^{p} &, & i = 1 \text{ mod } p\\ 0 &, & otherwise \end{cases}$$
(35)

Proof. We just prove (34) since the proof of (35) is similar. When |x| is even both sides in the equation are zero. Assume that |x| is odd. By the instability condition $P^i\lambda x=0$ when 2i>p(|x|-1)+1. When i is divisible by p this inequality implies $2i\geq p(|x|-1)+p$ or $\frac{2i}{p}\geq |x|$ and since |x| is odd $\frac{2i}{p}>|x|$. So $P^{i/p}x=0$ and the equation holds in this case. If 2i=p(|x|-1) then $P^i\lambda x=\lambda^2 x=\lambda(P^{i/p}x)$.

Finally assume that 2i < p(|x| - 1). Then we can apply the Adem relation:

$$P^{i}P^{\frac{|x|-1}{2}}x = \sum_{t=0}^{\left[\frac{i}{p}\right]} (-1)^{i+t} \binom{(p-1)(\frac{|x|-1}{2}-t)-1}{i-pt} P^{i+\frac{|x|-1}{2}-t}P^{t}x.$$

The instability condition shows that $P^{i+\frac{|x|-1}{2}-t}P^tx=0$ unless $i \leq pt$. But the binomial coefficient is zero when i < pt. So we get zero when $i \neq 0 \mod p$ and the term corresponding to t = i/p when $i = 0 \mod p$.

We now prove Proposition 3.4.

Proof. Let dK denote the graded \mathbb{F}_p -vector space given by $(dK)^n = K^{n+1}$ and $(dK)^{-1} = 0$. We write dx for the element in dK corresponding to x in K hence d(x+y) = dx + dy. We define an \mathcal{A} -algebra structure on dK by $P^i dx = dP^i x$ and $\beta dx = -d\beta x$. Let F(dK) denote the free graded commutative algebra on the \mathbb{F}_p -vector space dK. By the Cartan formula F(dK) is an \mathcal{A} -algebra and the graded symmetric product $K \odot F(dK)$ is an \mathcal{A} -algebra. By definition $\omega(K) = K \odot F(dK)/I$ where I is the ideal generated by

$$1 \odot d(xy) - d(x) \odot y - (-1)^{|x|} x \odot d(y), \tag{36}$$

$$1 \odot (d(\lambda x) - (dx)^p), \tag{37}$$

$$1 \odot d(\beta \lambda x).$$
 (38)

We verify that $A \cdot I \subseteq I$ such that $\omega(K)$ is an A-algebra. We have

$$\begin{split} P^{n}(1\odot d(xy) - dx\odot y - (-1)^{|x|}x\odot dy) &= \\ &\sum_{i+j=n} (1\odot d(P^{i}(x)P^{j}(y)) - dP^{i}x\odot P^{j}y - (-1)^{|x|}P^{i}x\odot dP^{j}y) \end{split}$$

which is in I by (36) since the degree of P^{i} is even. Further

$$\beta(1 \odot d(xy) - dx \odot y - (-1)^{|x|} x \odot dy) =$$

$$- (1 \odot d(\beta(x)y) - d\beta x \odot y - (-1)^{|\beta x|} \beta x \odot dy)$$

$$- (-1)^{|x|} (1 \odot d(x\beta y) - dx \odot \beta y - (-1)^{|x|} x \odot d\beta y)$$

which is also in I by (36).

In any \mathcal{A} -algebra one has $P^i(a^p) = (P^{i/p}a)^p$ when $i = 0 \mod p$ and zero otherwise, since this fact is a consequence of the Cartan formula alone. So by Lemma 13.1 we have the following relation in F(dK) when $i = 0 \mod p$:

$$P^{i}(d(\lambda x) - (dx)^{p}) = d(P^{i}\lambda x) - (P^{\frac{i}{p}}dx)^{p} = d(\lambda P^{\frac{i}{p}}x) - (dP^{\frac{i}{p}}x)^{p}$$

For $i \neq 0 \mod p$ we get zero. So P^i applied to an element of the form (37) lies in I. If we apply β to such an element we also land in I by (38). Finally Lemma 13.1 shows that $P^i(1 \odot d(\beta \lambda x)) \in I$ and trivially $\beta(1 \odot d(\beta \lambda x)) \in I$.

We verify that $\omega(K) \in \mathcal{U}$. We must show that $P^i dx = 0$ if 2i > |x| - 1. This holds if 2i > |x| since $K \in \mathcal{U}$. If 2i = |x| we have $P^i dx = dP^i x = d(x^p) = 0$. We must also show that $\beta P^i dx = 0$ when 2i + 1 > |x| - 1. This holds if 2i + 1 > |x| since $K \in \mathcal{U}$ and if 2i + 1 = |x| we have $\beta P^i dx = -d\beta P^i x = -d\beta \lambda x = 0$. Since the action on products are by the Cartan formula we have shown that $\omega(K) \in \mathcal{U}$.

Finally we check that $\omega(K) \in \mathcal{K}$. The Cartan formula holds by definition. For |x| odd we have $P^{\frac{|dx|}{2}}(dx) = d\lambda x = (dx)^p$ and the result follows. \square

References

- [1] M. Bökstedt, W. C. Hsiang, I. Madsen, The cyclotomic trace and algebraic K-theory of spaces, Invent. Math. 111 (1993), no. 3, 465-539.
- [2] M. Bökstedt & I. Ottosen, Homotopy orbits of free loop spaces, Fund. Math. 162 (1999), 251-275.
- [3] H. H. Li & W. M. Singer, Resolutions of Modules Over the Steenrod Algebra and Classical Theory of Invariants, Math. Z. 181 (1982), 269-286.
- [4] I. Madsen, Algebraic K-theory and traces, in: Current Developments in Mathematics, International Press, Boston, 1995, 191-321.
- [5] J.P. May, A general algebraic approach to Steenrod operations, Springer LNM 168, The Steenrod algebra and its applications.
- [6] G. Nishida, Cohomology Operations in Iterated Loop Spaces, Proc. Japan Acad. 44 (1968), 104-109.

- [7] N. E. Steenrod, Cohomology Operations, Princeton University Press 1962.
- [8] C. Wilkerson, Classifying spaces, Steenrod operations, and algebraic closure, Topology 16 (1977), 227-237.