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Abstract

Let X be a connected space and let K = H∗(X; Fp) where p is an
odd prime. We construct functors ω and ` which approximate the co-
homology of the free loop space ΛX as follows: There are morphisms
ω(K)→ H∗(ΛX; Fp) and `(K)→ H∗

S1(ΛX; Fp). These are isomorphisms
when X is a product of Eilenberg-MacLane spaces of type K(Fp, n) for
n ≥ 1.

MSC: 55N91; 55P35; 55R12

1 Introduction

The string cohomology of a topological space X with coefficients in a ring R is
defined as follows:

H∗
st(X ;R) := H∗

S1(ΛX ;R) = H∗(ES1 ×S1 ΛX ;R)

where ΛX denotes the free loop space of X . These cohomology groups together
with the cohomology of the free loop space itself H ∗(ΛX ;R) plays a central role
in geometry and topology. It is however not know how to compute these in
general.

When R = F2 = Z/2, M. Bökstedt and I found computable functors of
H∗(X ; F2) which approximate these cohomology groups [2]. The purpose of
this paper is to generalize these functors to the case R = Fp = Z/p where p
is any of the odd primes. Certain algebra generators in string cohomology are
more difficult to construct in the odd primary case. Hence method and strategy
differs from [2] at various places.

2 Notation

Fix an odd prime p. We use Fp-coefficients everywhere unless otherwise is
specified. A denotes the mod p Steenrod algebra, U the category of unstable
A-modules and K the category of unstable A-algebras. We write K0 for the full

∗The author was supported by the European Union TMR network ERB FMRX CT-97-
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subcategory of K with the connected unstable A-algebras as its objects. The
category of differential graded algebras is denoted DGA.

For K ∈ K we define λ : K → K as follows

λx =

{
P

|x|−1

2 x , |x| odd

0 , |x| even

Note that |λx| = p(|x| − 1) + 1. Note also that λ is a derivation over Frobenius
by the Cartan formula

λ(xy) = λ(x)yp + xpλ(y).

In any graded Fp-algebra K we define σ : K → Fp by σ(x) = 1 for |x| odd
and σ(x) = 0 for |x| even. We also define σ̂ : K → Fp by σ̂(x) = 1− σ(x).

3 The approximation functor ω

Let Y be a connected S1-space with action map η : S1 × Y → Y . We have
η ◦ γ = id where γ(y) = (1, y). Recall that H ∗(S1) = Λ(v) where |v| = 1.

Definition 3.1. Define the map d : H∗(Y )→ H∗−1(Y ) by

η∗(y) = 1⊗ y + v ⊗ dy.

Proposition 3.2. The map d satisfies the following:

d ◦ d = 0, (1)

d(x + y) = dx+ dy, (2)

d(xy) = d(x)y + (−1)|x|xd(y), (3)

P i(dx) = d(P ix) for i ≥ 0, (4)

β(dx) = −d(βx), (5)

d(λx) = (dx)p, (6)

d(βλx) = 0. (7)

Proof. Similar to the p = 2 case proved in [2] Proposition 3.2.

Definition 3.3. For K ∈ K0 we define ω(K) as the symmetric product of K
with the free graded commutative algebra on generators dx of degree |x| − 1 for
x ∈ K divided by the ideal generated by the elements

d(x+ y)− dx− dy, (8)

d(xy)− d(x)y − (−1)|x|xd(y), (9)

d(λx) − (dx)p, (10)

d(βλx). (11)

There is a degree -1 differential d on ω(K) defined by d(x) = dx for x ∈ K as a
derivation over K. Hence (ω(K), d) ∈ DGA.

Proposition 3.4. For K ∈ K we can define an A-action on ω(K) by θ(x) = θx
and θ(dx) = (−1)|θ|d(θx) for x ∈ K and θ ∈ A. In this way ω becomes a functor
ω : K0 → K. Note that the differential d on ω(K) is graded A-linear.
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Proof. See the appendix.

Definition 3.5. For a connected space X we define the map

e : ω(H∗X)→ H∗(ΛX)

by x 7→ ev∗0(x) and dx 7→ dev∗0(x) where ev0 : ΛX → X ; f 7→ f(1).

Remark 3.6. The map e is a morphism in K as well as a morphism in DGA. It
is also natural in X . We view ω(H ∗X) as an approximation to H ∗(ΛX) via the
morphism e.

Proposition 3.7. Let K,L ∈ K0 and let i : K → K ⊗L and j : L→ K ⊗L be
the inclusions given by i(x) = x⊗ 1 and j(y) = 1⊗ y. The composite

κ : ω(K)⊗ ω(L)
ω(i)⊗ω(j)
−−−−−−→ ω(K ⊗ L)⊗ ω(K ⊗ L)

µ
−−−−→ ω(K ⊗ L),

where µ denotes the product, is an isomorphism in both DGA and K. For
connected spaces X and Y with homology of finite type the following diagram
commutes.

ω(H∗X)⊗ ω(H∗Y )
κ

−−−−→ ω(H∗X ⊗H∗Y )

e⊗e

y e

y

H∗(ΛX)⊗H∗(ΛY )
∼=

−−−−→ H∗(Λ(X × Y ))

Proof. The map κ is a morphism in both DGA and K since it is a composite
of maps which are morphisms in both categories. For a ∈ K and b ∈ L we have
that κ(a⊗ b) = a⊗ b and κ(d⊗(a⊗ b)) = d(a⊗ b). We verify that there is a well
defined Fp-algebra map γ in the opposite direction of κ with γ(a ⊗ b) = a ⊗ b
and γ(d(a⊗ b)) = d⊗(a⊗ b) such that κ is an isomorphism.

Elements of the form (8) are mapped to zero by definition. By direct com-
putation one sees that the elements of the form (9) are also mapped to zero.
Assuming that σ(a) = 1 and σ(b) = 0 we find

d(λ(a⊗ b))− (d(a⊗ b))p =d(λ(a) ⊗ bp)− d(a)p ⊗ bp 7→

d(λa) ⊗ bp − d(a)p ⊗ bp = 0,

d(β(λ(a ⊗ b))) =d(βλ(a) ⊗ bp) 7→

d(βλ(a)) ⊗ bp = 0

and if σ(a) = σ(b) the elements are already zero in ω(K ⊗ L). The above
description of κ on generators shows that the diagram commutes.

4 The ω approximation for certain Eilenberg-

MacLane spaces

For an Abelian group A and positive integer n we let BnA denote the Eilenberg-
MacLane space K(A, n). In this section we prove the following result:

Theorem 4.1. The map e : ω(H∗BnFp) → H∗(ΛBnFp) is an isomorphism in
K and DGA for each n ≥ 1.
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We first consider the case n ≥ 2. The Whitehead theorem together with
the long exact sequence of homotopy groups and the five lemma proves the
following:

Proposition 4.2. Let G be a connected topological group. Then there is a
commutative diagram as follows

ΩG
i2−−−−→ G× ΩG

pr1
−−−−→ G

id

y m

y id

y

ΩG −−−−→ ΛG
ev0−−−−→ G

where m(f, x) = (z 7→ f(z) · x). The map m is a weak homotopy equivalence.

Proposition 4.3. For n ≥ 2 there is an isomorphism

m∗ : H∗(ΛBnFp)→ H∗(BnFp)⊗H
∗(Bn−1Fp)

with the property m∗ ◦ e(ιn) = ιn ⊗ 1 and m∗ ◦ e(dιn) = cn1 ⊗ ιn−1 for some
nonzero constant cn ∈ Fp.

Proof. The space BnFp is a topological Abelian group since Fp is an Abelian
group. Proposition 4.2 with G = BnFp gives that m∗ is an isomorphism and
that m∗ ◦ev∗0(ιn) = 1⊗ ιn as stated. We have m∗(dev∗0ιn) = cn1⊗ ιn−1 for some
cn ∈ Fp since 1⊗ ιn−1 is the only class in degree n − 1 of the right hand side.
Let h denote the composite

h : S1 ×BnFp ×B
n−1Fp

m
−−−−→ S1 × ΛBnFp

η
−−−−→ ΛBnFp

ev0−−−−→ BnFp

where η is the action map. Then h∗(ιn) = 1⊗ ιn⊗ 1 + cnv⊗ 1⊗ ιn−1. If cn = 0
then ev0 ◦ η is homotopic to the composite

k : S1 × ΛBnFp
pr2
−−−−→ ΛBnFp

ev0−−−−→ BnFp

since BnFp classifies mod p cohomology in degree n. But we have ev0 ◦η(z, f) =
f(z) so its adjoint is the identity on ΛBnFp. The adjoint of k is the map
ΛBnFp → ΛBnFp which sends a loop f to the constant loop with value f(1).
The maps k and ev0 ◦ η cannot be homotopic since their adjoints are not.

Proposition 4.4. The map e : ω(H∗BnFp)→ H∗(ΛBnFp) is an isomorphism
for each n ≥ 2.

Proof. Since the cohomology of the spaces BmFp are free objects in K we can
define a morphism in K as follows:

f : H∗(BnFp)⊗H
∗(Bn−1Fp)→ ω(H∗BnFp) , ιn ⊗ 1 7→ ιn

, 1⊗ ιn−1 7→ c−1
n dιn.

We have m∗ ◦ e ◦ f = id and f ◦ m∗ ◦ e = id since these equalities hold on
generators.

The case n = 1 is interesting since here ΛBFp splits in p components. We
will use the following result to see that ω(H∗BFp) split accordingly.
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Lemma 4.5. There is an isomorphism of rings as follows

α : Fp[x]/(x
p − x)→ (Fp)

p ; x 7→ (0, 1, 2, . . . , p− 1)

where Fp[x] is the polynomial ring in one variable x of degree zero and (Fp)
p is

the p-fold Cartesian product of Fp by itself.

Proof. Use the factorization xp−x =
∏

n∈Fp
(x−n) and the Chinese remainder

theorem.

Remark 4.6. Let en = α−1(0, . . . , 0, 1, 0, . . . , 0) with the 1 on the nth place for
n ∈ Fp. Clearly enem = 0 for n 6= m, e2

n = en and
∑
en = 1. Also xen = nen.

Finding eigenvectors for xf(x) = nf(x) and normalizing one gets

e0 = 1− xp−1

em = −

p−1∑

i=1

(
x

m
)i , m 6= 0

Definition 4.7. For n ∈ Fp define the following action map

fn : Z× Fp → Fp ; (r, [s]) 7→ [nr + s].

We let BFp(n) denote BFp equipped with S1-action Bfn and write dn for the
corresponding action differential on H ∗BFp(n).

Proposition 4.8. We have H∗BFp(n) = Λ(vn)⊗Fp[βvn] where |vn| = 1. The
differential dn on this algebra is given by dnvn = n and dnβvn = 0 for each
n ∈ Fp.

Proof. We must show that (Bfn)∗(vn) = 1 ⊗ vn + nv ⊗ 1. This follows from
H1(Bfn) = π1(Bfn) = fn by taking duals. Since λvn = ιn the class βvn is
mapped to zero.

Proposition 4.9. The map e : ω(H∗BFp)→ H∗(ΛBFp) is an isomorphism.

Proof. From [1] Lemma 7.11 we have ΛBFp ' tn∈Fp
BFp. Define maps jn :

BFp(n) → ΛBFp by x 7→ (z 7→ Bfn(z, x)) for n ∈ Fp. These are S1-maps.
Let (ΛBFp)(n) denote the component of ΛBFp containing the image of jn.
Then the restriction jn| : BFp(n) → (ΛBFp)(n) is an S1-map and a homotopy
equivalence. Especially the induced in cohomology (jn|)

∗ is an isomorphism
of differential graded algebras. By Proposition 4.8 we see that (ΛBFp)(n) 6=
(ΛBFp)(m) for n 6= m such that tjn : tBFp(n) → ΛBFp is an S1-map and a
homotopy equivalence. Especially (tjn)∗ = (j∗0 , . . . , j

∗
p−1) is an isomorphism.

So it suffices to show that g = (j∗0 , . . . , j
∗
p−1) ◦ e is an isomorphism. We have

(j∗n ◦ e)(x) = j∗n ◦ ev
∗
0(x) = (ev0 ◦ jn)∗(x) = x, (12)

(j∗n ◦ e)(dx) = j∗n(dev∗0(x)) = dn ◦ j
∗
n ◦ ev

∗
0(x) = dnx (13)

for x ∈ H∗BFp which describes the map g on generators. By definition we have

ω(H∗BFp) = Λ(ι1)⊗ Fp[βι1]⊗
(
Fp[dι1]/((dι1)

p − dι1)
)
.

From Lemma 4.5 and (13) we see that g is an isomorphism in degree zero. By
(12) we conclude that it is an isomorphism in all degrees.
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5 Steenrod diagonal elements

In this and the following four sections we describe algebra related to certain
classes in string cohomology. The motivation comes later in Theorem 11.3. In
the following K denotes an unstable A-algebra. The polynomial algebra Fp[u]
where |u| = 2 is an object in K by the isomorphism Fp[u] ∼= H∗(BS1).

Definition 5.1. For x ∈ K and ε = 0, 1 we define Stε(x) ∈ Fp[u]⊗K by

Stε(x) = u−εσ̂(x)
∑

i≥0

(−up−1)[|x|/2]−i ⊗ βεP ix.

Note that the terms where the total exponent of u is negative has β εP ix = 0.
Let R(K) ⊆ Fp[u]⊗K be the sub-Fp-algebra generated by u⊗ 1 and Stε(x) for
all x ∈ K and ε = 0, 1.

Theorem 5.2. For each θ ∈ A one has θR(K) ⊆ R(K). Thus R is a functor
R : K → K. The explicit formulas are as follows where n = [|x|/2] and ε = 0, 1:

P iStε(x) =
∑

t

(
(p− 1)(n− t) + εσ(x)

i− pt

)
u(p−1)(i−pt)Stε(P

tx)

−ε(−1)σ(x)
∑

t

(
(p− 1)(n− t)− 1 + σ(x)

i− pt− 1

)
u(p−1)(i−pt)−1+(2−p)σ(x)St0(βP

tx),

βStε(x) =(1− ε)uσ̂(x)St1(x).

Proof. The formula for the Bockstein operation follows directly by the definition
of Stε(x). We use results from [3] to prove the other formula. By [8] we have
that Fp[u, u

−1] is an A-algebra with β = 0 and

P iuj =

(
j

i

)
uj+i(p−1) ; i, j ∈ Z ; i ≥ 0.

Here the following extended definition of binomial coefficients is used where
r ∈ R and k ∈ Z.

(
r

k

)
=





r(r−1)...(r−k+1)
k! , k > 0

1 , k = 0

0 , k < 0

Let ∆ = Λ(a) ⊗ Fp[b, b
−1] with |a| = 2p − 3, |b| = 2p − 2 be the A-algebra

introduced in [3] (2.6). That is βa = b and

P i(bj) = (−1)i

(
(p− 1)j

i

)
bi+j ,

P i(abj−1) = (−1)i

(
(p− 1)j − 1

i

)
abi+j−1.

Note that we have changed the names of the generators. In [3] they were named
u and v instead of a and b. We define an additive transfer map as follows:

τ : ∆→ Fp[u, u
−1] ; bj 7→ 0 ; abj−1 7→ (−up−1)ju−1.

Note that |τ | = −1. A direct verification shows that τ is A-linear.
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A functor R+ from the category of graded A-modules to itself is constructed
in [3]. In the case of an unstable A-algebra K it comes with an A-linear map
f : R+K → Σ∆⊗K defined by [3] (3.1), (3.2). The composite

R+K
f

−−−−→ σ∆⊗K
Στ⊗1
−−−−→ ΣFp[u, u

−1]⊗K

is given by

sbk ⊗ x 7→ −s
∑

j

(−up−1)k−ju−1 ⊗ βP jx,

sabk−1 ⊗ x 7→ s
∑

j

(−up−1)k−ju−1 ⊗ P jx.

Especially sbn ⊗ x 7→ −suσ(x)St1(x) and sabn−1 ⊗ x 7→ su−1St0(x) where n =
[|x|/2]. The formulas [3] (3.4), (3.5) for the A-action on R+M gives the following
formulas for the A-action on uσ(x)St1(x) and u−1St0(x):

P i(uσ(x)St1(x)) =
∑

t

(
(p− 1)(n− t)

i− pt

)
u(p−1)(i−pt)−σ(x)St1(P

tx)

−
∑

t

(−1)σ(x)

(
(p− 1)(n− t)− 1

i− pt− 1

)
u(p−1)(i−pt−σ(x))−1St0(βP

tx),

P i(u−1St0(x)) =
∑

t

(
(p− 1)(n− t)− 1

i− pt

)
u(p−1)(i−pt)−1St0(P

tx).

This proves the result directly for σ(x) = 0 and ε = 1. By the Cartan
formula applied to uu−1Stε(x) we have that P iStε(x) = uP i(u−1Stε(x)) +
upP i−1(u−1Stε(x)). By combining this with the formulas above we get the
result in the other cases.

6 The functor `

In this section we describe the functor which approximates string cohomology.
We also define maps which relate this functor to the functors R and ω.

Definition 6.1. For K ∈ K0 we define `(K) as the graded commutative Fp-
algebra generated by the classes

φ(x) of degree p|x| − σ(x)(p − 1),

δ(x) of degree |x| − 1,

q(x) of degree p|x| − 1− σ(x)(p − 3)

for all homogeneous x ∈ K and a class u of degree 2; modulo the ideal generated
by

φ(x + y)− φ(x) − φ(y) + σ(x)

p−2∑

i=0

(−1)iδ(x)iδ(y)p−2−iδ(xy), (14)

δ(x+ y)− δ(x)− δ(y), (15)

q(x+ y)− q(x)− q(y) + σ̂(x)

p−1∑

i=1

(−1)i 1

i
δ(xiyp−i), (16)
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(−1)σ(a)σ̂(c)δ(a)δ(bc) + (−1)σ(b)σ̂(a)δ(b)δ(ca) + (−1)σ(c)σ̂(b)δ(c)δ(ab), (17)

φ(ab)− (−up−1)σ(a)σ(b)φ(a)φ(b), (18)

q(ab)− (−up−1)σ(a)σ(b)(uσ(b)q(a)φ(b) + (−u)σ(a)φ(a)q(b)), (19)

q(x)p − up−1q(λx) − φ(βλx), (20)

δ(a)φ(b) − δ(abp)− δ(aλb) + δ(ab)δ(b)p−1, (21)

δ(a)q(b)− δ(abp−1)δ(b)− δ(aβλb), (22)

δ(x)u, (23)

q(βλx), (24)

δ(βλx) (25)

where a, b, c, x, y ∈ K and |x| = |y|. It is understood that δ(1) = q(1) = 0.

Remark 6.2. We have some immediate consequences of these relations:

• By (14)-(16) we have φ(0) = q(0) = δ(0) = 0.

• By (18), (19) and (21) the algebra `(K) is unital with unit φ(1).

• By (18) and (19) we have q(an) = nφ(a)n−1q(a) such that q(ap) = 0.

• By (22) we have δ(bp) = 0 and also the important relation δ(λb) = δ(b)p.

Lemma 6.3. For any K ∈ K0 the following relations hold in ω(K):

p−1∑

i=1

(−1)i+1 1

i
d(xiyp−i) = (x+ y)p−1d(x+ y)− xp−1dx− yp−1dy, (26)

p−2∑

j=0

(−1)j+1(dx)j(dy)p−2−jd(xy) =

(d(x + y))p−1(x+ y)− (dx)p−1x− (dy)p−1y. (27)

Here |x| = |y| is assumed to be even in (26) and odd in (27).

Proof. We verify (26) and omit the proof of (27) which is similar. Since d is a
derivation we have

p−1∑

i=1

(−1)i+1 1

i
d(xiyp−i) =

p−1∑

i=1

(−1)i+1(xi−1yp−1dx − xiyp−i−1dy).

By splitting the sum in two at the minus sign and substituting j = i− 1 in the
first of the resulting sums we see that the above equals the following:

p−2∑

j=0

(−1)jxjyp−j−1dx+

p−1∑

i=1

(−1)ixiyp−i−1dy =

p−1∑

t=0

(−1)txtyp−t−1(dx+ dy)− xp−1dx− yp−1dy.
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For 0 ≤ t ≤ p− 1 we have that t! is invertible in Fp and also

(
p− 1

t

)
t! = (p− 1)(p− 2) . . . (p− t) = (−1)tt! mod p.

Thus we have
(
p−1

t

)
= (−1)t. Substituting this in the above and using the

binomial formula the result follows.

Proposition 6.4. For any K ∈ K0 there is a natural homomorphism of Fp-
algebras which we call the de Rham map

DR : `(K)→ ω(K); φ(x) 7→ xp + λx− x(dx)p−1,

q(x) 7→ xp−1dx+ βλx,

δ(x) 7→ dx, u 7→ 0.

and we have Im(DR) ⊆ ker(d : ω(K) → ω(K)). There is also a natural homo-
morphism of Fp-algebras which we call the Steenrod map

St : `(K)→ Fp[u]⊗K; φ(x) 7→ St0(x), q(x) 7→ St1(x),

δ(x) 7→ 0, u 7→ u⊗ 1.

The image of this map is Im(St) = R(K). There is a commutative diagram of
Fp-algebras as follows.

`(K)
St

−−−−→ Fp[u]⊗K

DR

y p1

y

ω(K)
p2

−−−−→ K

where the algebra maps p1 and p2 are given by p1(u) = 0 and p2(dx) = 0,
p2(x) = x for each x ∈ K.

Proof. We check that the formulas for DR maps the relations (14)-(25) to zero.
Formula (27) and the additivity of x 7→ xp shows that (14) is mapped to zero.
It is trivial that (15) is mapped to zero. By (26) and the additivity of x 7→ βλx
it follows that (16) is mapped to zero.

Taking the derivative of products and permuting factors we find the following
equations:

d(a)d(bc) = d(a)d(b)c + (−1)σ(b)d(a)bd(c),

d(b)d(ca) = (−1)σ(a)(σ̂(b)+σ̂(c))ad(b)d(c) + (−1)σ(c)+σ̂(a)(σ̂(b)+σ(c))d(a)d(b)c,

d(c)d(ab) = (−1)σ̂(c)(σ̂(a)+σ(b))d(a)bd(c) + (−1)σ(a)+σ̂(c)(σ(a)+σ̂(b))ad(c)d(b).

After some reductions (17) follows from these.
One easily checks that (18) and (19) are mapped to zero in each of the cases

σ(a) = σ(b) = 0, σ(a) = σ(b) = 1 and σ(a) = σ̂(b) = 1. It also follows by small
direct computations that (20)-(25) are mapped to zero.

We check that (14)-(25) are mapped to zero by the formulas defining St.
Since δ(x) is mapped to zero this is trivial for all elements except (18), (19),
(20) and (24).
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By the Cartan formula and [ |ab|
2 ] = [ |a|2 ] + [ |b|2 ] + σ(a)σ(b) one verifies that

St0(ab) = (−up−1)σ(a)σ(b)St0(a)St0(b),

St1(ab) = (−up−1)σ(a)σ(b)(uσ(b)St1(a)St0(b) + (−u)σ(a)St0(a)St1(b))

such that (18) and (19) are mapped to zero. Lemma 13.1 implies that (20) and
(24) are mapped to zero. The diagram commutes by direct verification.

7 The de Rham map and cohomology of ω(K)

In this section K denotes a connected unstable A-algebra. The de Rham map
gives a map from `(K)/(u) to the cycles in ω(K). We give an important criterion
which ensures that this map is an isomorphism. The material corresponds to
section 8 in [2].

Definition 7.1. Let Iδ ⊆ `(K) denote the ideal Iδ = (δ(x)|x ∈ K).

Proposition 7.2. There is an Fp-linear map as follows

Ψ : ω(K)→ `(K) ; a0da1 . . . dan 7→ δ(a0)δ(a1) . . . δ(an)

where a0, . . . , an ∈ K. Its image is the ideal Im(Ψ) = Iδ.

Proof. We must show that Ψ is well defined. The relations arising from (8), (9)
and (11) are respected since we have the same relations in `(K) with d replaced
by δ. We must verify that the following relation is respected:

a0da1 . . . dai−1d(aiai+1)dai+2 . . . dan =

(−1)(k+σ̂(ai))σ(ai+1)a0ai+1da1 . . . daidai+2 . . . dan

+(−1)(k+1)σ(ai)a0aida1 . . . dai−1dai+1 . . . dan

where k = |da1 . . . dai−1|. This follows if the relation

xd(yz) = (−1)σ̂(y)σ(z)xzd(y) + (−1)σ(y)zyd(z)

is respected. By relation (17) one sees that it is after some work with the
signs.

Definition 7.3. Define the Fp-algebra ω̃(K) as the quotient of `(K) by the
ideal Iδ + (u). Since DR(Iδ) ⊆ dω(K) we may define an Fp-algebra map Φ by
the following diagram where P denotes the canonical projection:

`(K)/(u)
P

−−−−→ ω̃(K)

DR

y Φ

y

ω(K) −−−−→ ω(K)/dω(K)

Since d ◦DR = 0 we have in fact defined a morphism Φ : ω̃(K)→ H ∗(ω(K)).

Remark 7.4. We have a filtration of `(K) by ideals as follows:

`(K) ⊇ (u) ⊇ (u2) ⊇ · · · ⊇ (ui) ⊇ . . .

and (ui)/(ui+1) = uiω̃(K) for i ≥ 1.
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Proposition 7.5. The composite Ψ ◦ d : ω(K) → `(K) is trivial, so we can
define Ψ as a map on ω(K)/dω(K). This allows us to consider the composite
Ψ ◦ Φ : ω̃(K)→ `(K). This composite is zero.

Proof. By definition of Ψ we have Ψ ◦ d = 0. The following rules hold for b ∈ K
and z = a0da1 . . . dan ∈ ω̃(K):

Ψ(Φ(φ(b))z) = (−1)|φ(b)|φ(b)Ψ(z) , Ψ(Φ(q(b))z) = (−1)|q(b)|q(b)Ψ(z).

In fact the first rule follows from (21) and the second from (22) as one sees
by direct verification. By these rules and the observation Ψ(1) = 0 the result
follows.

Remark 7.6. We can collect the information we have gathered so far in a com-
mutative diagram:

ω̃(K)
Φ

−−−−→ ω(K)/dω(K)
Ψ

−−−−→ `(K)/(u)
P

−−−−→ ω̃(K)
x DR

y Φ

y

ω(K)
d

−−−−→ ω(K) −−−−→ ω(K)/dω(K)

where the composite Ψ ◦ Φ vanishes and ker(P ) = Im(Ψ).

Theorem 7.7. Assume that the map Φ : ω̃(K) → H ∗(ω(K)) is an isomor-
phism. Then so is

DR : `(K)/(u)→ ker(d : ω(K)→ ω(K)).

Proof. The diagram is formally the same as the one above Theorem 8.5 of [2]. So
the same diagram chase as in the proof of Theorem 8.5 in [2] gives the result.

Proposition 7.8. For any pair K,L ∈ K0 the following composite is an iso-
morphism

κ̃ : ω̃(K)⊗ ω̃(L)
ω̃(i)⊗ω̃(j)
−−−−−−→ ω̃(K ⊗ L)⊗ ω̃(K ⊗ L)

µ
−−−−→ ω̃(K ⊗ L)

where i : K → K ⊗ L; i(a) = a ⊗ 1 and j : L → K ⊗ L; j(b) = 1 ⊗ b are the
canonical inclusions and µ denotes the product homomorphism. The following
diagram commutes.

ω̃(K ⊗ L)
ΦK⊗L

−−−−→ H∗(ω(K ⊗ L))

κ̃

x κ∗
x

ω̃(K)⊗ ω̃(L)
ΦK⊗ΦL−−−−−→ H∗(ω(K))⊗H∗(ω(L))

Proof. We verify that κ̃ is an isomorphism. For a ∈ K and b ∈ L we have that
a⊗ b = (a⊗ 1)(1⊗ b) giving the following relations in ω̃(K ⊗ L):

φ(a⊗ b) = (1− σ(a)σ(b))φ(a ⊗ 1)φ(1⊗ b),

q(a⊗ b) = σ̂(b)q(a⊗ 1)φ(1⊗ b) + σ̂(a)φ(a⊗ 1)q(1⊗ b).
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Since φ(a) ⊗ 1 7→ φ(a ⊗ 1), q(a) ⊗ 1 7→ q(a ⊗ 1), 1 ⊗ φ(b) 7→ φ(1 ⊗ b) and
1 ⊗ q(b) 7→ q(1 ⊗ b) we see that κ̃ is surjective. One checks that the following
gives a well defined map γ̃ in the opposite direction of κ̃:

φ(a⊗ b) 7→ (1− σ(a)σ(b))φ(a) ⊗ φ(b),

q(a⊗ b) 7→ σ̂(b)q(a)⊗ φ(b) + σ̂(a)φ(a) ⊗ q(b).

By checking on generators we see that γ̃ ◦ κ̃ = id so κ̃ is injective as well and
hence an isomorphism.

The isomorphisms κ and κ̃ have corresponding factorizations. The diagram
splits in two commuting squares accordingly.

8 Frobenius algebras

Definition 8.1. A Frobenius algebra is a graded commutative Fp-algebra K
equipped with two Fp-linear maps β, λ : K → K satisfying the following condi-
tions:

• K is connected (Kq = 0 for q < 0 and K0 = Fp) and finite dimensional in
each degree.

• |β| = 1, β ◦ β = 0 and β(xy) = β(x)y + (−1)|x|xβ(y) for all x, y ∈ K.

• |λx| = p(|x| − 1) + 1, λx = 0 when |x| is even, λx = x when |x| = 1 and
λ(xy) = λ(x)yp + xpλ(y) for all x, y ∈ K.

A morphism of Frobenius algebras f : (K,β, λ) → (K ′, β′, λ′) is an Fp-algebra
map f : K → K ′ of degree zero such that f ◦ λ = λ′ ◦ f and f ◦β = β ′ ◦ f . The
category of Frobenius algebras is denoted F .

Remark 8.2. There is a forgetful functor K0 → F .

Definition 8.3. Let vFp denote the category of positively graded Fp-vector
spaces which are finite dimensional in each degree. Let I : F → vFp denote
the functor which takes a Frobenius algebra to its augmentation ideal (that is
I(K) = K∗>0). Define the functor SF : vFp → F as the left adjoint of I . For
V ∈ vFp we call SF(V ) the free Frobenius algebra on V .

Remark 8.4. We have SF (V ⊕W ) = SF(V )⊗SF(W ). Furthermore there is an
explicit description as follows

SF (V ) = SCA

(
V ⊕ βV ⊕

⊕

i≥1,ν∈{0,1}

βνλi(βV even ⊕ V odd,∗>1)
)

where SCA denotes the free graded commutative algebra functor.

Recall that a sequence of integers I = (ε1, s1, ε2, s2, . . . , εk, sk, εk+1) with
si ≥ 0 and εi ∈ {0, 1} is called admissible if si ≥ psi+1 + εi+1 and sk ≥ 1 or if
k = 0 when I = (ε). The degree of I is defined as |I | =

∑
εj +

∑
2sj(p − 1)

and the excess is defined recursively by e((ε, s), J) = 2s + ε − |J |. We use the
following notation P I = βε1P s1βε2P s2 . . . βεkP skβεk+1 .
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Lemma 8.5. If n ≥ 2 then H∗BnFp is the free Frobenius algebra on the vector
space generated by the following set:

{P Iιn|I is admissible , e(I) ≤ n− 2, ε1 = 0}.

Furthermore H∗BFp is the free Frobenius algebra on the vector space generated
by the class ι1.

Proof. The case n = 1 is trivial. Assume that n ≥ 2 and define the set

A(n) = {I |I is admisseble , e(I) ≤ n− 1, |I |+ n is odd }.

Remark that if I ∈ A(n) then (0, (|I | + n − 1)/2, I) ∈ A(n). To see this write
I ∈ A(n) as I = (ε, s, I ′). Then e(I) = 2s + ε − |I ′| ≤ n − 1 or equivalently
2sp+2ε−|I | ≤ n− 1 such that the sequence (0, (|I |+n− 1)/2, I) is admissible.
Its excess is n− 1 and its degree plus n is odd since p− 1 is even.

By Cartan’s computation (a special case of [5], Theorem 10.3) we have that
H∗BnFp is the free graded commutative algebra on the set

B = {P Jιn|J is admissible , e(J) < n or (e(J) = n and ε1 = 1)}.

Assume that P Iιn belongs to the set in the statement of the lemma. Then
P Iιn and βP Iιn belongs to B. By the remark we see that if |I |+n is even then
βελiβP I ιn ∈ B and if |I |+ n is odd then βελiP Iιn ∈ B for ε = 0, 1 and i ≥ 1.

Conversely, assume that P J ιn ∈ B. If e(J) ≤ n − 2 or e(J) = n − 1 and
ε1 = 1 it is clearly one of the generators described in the lemma. It suffices to
handle the case e(J) = n−1, ε1 = 0 since the case e(J) = n, ε1 = 1 then follows.
Write J as J = (0, s, J ′) where e(J) = 2s− |J |′ = n− 1. Then 2s = n+ |J ′| − 1
such that P J ιn = λP J′ιn and e(J) ≤ e(J ′). We can continue this process until
the next ε equals one or the excess drops below n− 1.

Theorem 8.6. The map Φ : ω̃(K)→ H∗(ω(K)) is an isomorphism when K is
a free Frobenius algebra.

Proof. It suffices to show this when K is a free Frobenius algebra on a one
dimensional vector space. Let v be the generator of this vector space. We first
check the case |v| = 1 where K = Λ(v)⊗Fp[βv]. The idempotents from Remark
4.6 (with x = dv) gives the following splitting:

ω(K) =
⊕

i∈Fp

eiω(K).

For each i we have dei = 0 and (dv)ei = iei. Also λv = v such that dβv = 0.
From this we see that d(vε(βv)rei) = εi(βv)rei. It follows that H∗(eiω(K)) = 0
for i 6= 0 and H∗(e0ω(K)) = K. So H∗(ω(K)) = K and since Φ(φ(v)) = ve0
and Φ(q(v)) = βv we see that Φ is surjective. The relations φ(βv) = q(v)p and
q(βv) = 0 shows that φ(v) and q(v) generate ω̃(K) so Φ is also injective.

Assume that |v| is even. In the following we write [−] for the functor which
takes a set to the vector space it generates. We have

K = SCA[v, βv, λiβv, βλiβv|i ≥ 1]
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and we find that ω(K) = K ⊗ SCA[dv, dβv]. We change basis such that the
differential becomes easier to describe:

ω(K) =SCA[v, dv]⊗ SCA[βv, dβv] ⊗

SCA[λiβv − (dλi−1βv)p−1λi−1βv, βλiβv|i ≥ 1].

By the Künneth formula we find that H∗(ω(K)) equals

SCA[vp, vp−1dv]⊗ SCA[λiβv − (dλi−1βv)p−1λi−1βv, βλiβv|i ≥ 1].

The algebra ω̃(K) is generated by the classes φ(v), φ(λiβv), q(v) and q(λiβv)
where i ≥ 0. We see that Φ maps these generators to the free generators for the
cohomology of ω(K). Hence Φ is an isomorphism. The case where |v| is odd is
similar.

9 A pullback description of the functor `

Proposition 9.1. Let (ni) be a sequence of positive integers such that the set
{i|ni = N} is finite for each N . In particular (ni) may be a finite sequence. If
we let K = H∗(

∏
BniFp) then ker(St) = Iδ.

Proof. We must show that St : `(K)/Iδ → Fp[u]⊗K is injective. The algebra
`(K)/Iδ has generators φ(x), q(x) for x ∈ K together with u and the relations
are that φ and q are additive and that (18), (19), (20) and (24) equals zero.

For a free Frobenius algebra K = SF(V ) we have listed a set of algebra
generators for `(K)/Iδ below and we have written how they are mapped by St
modulo elements in the ideal (up−1). Here z ∈ V 1, v ∈ V odd,∗>1 and w ∈ V even

runs through a basis for V and i ≥ 0:

φ(z) 7→ 1⊗ z, q(z) 7→ 1⊗ βz,

φ(βv) 7→ 1⊗ (βv)p, q(βv) 7→ −up−2 ⊗ βP (|v|−1)/2βv,

φ(λiv) 7→ 1⊗ λi+1v, q(λiv) 7→ 1⊗ βλi+1v,

φ(w) 7→ 1⊗ wp, q(w) 7→ −up−2 ⊗ βP |w|/2−1w,

φ(λiβw) 7→ 1⊗ λi+1βw, q(λiβw) 7→ 1⊗ βλi+1βw,

u 7→ u.

We claim that these generators are mapped to algebraically independent
elements in Fp[u] ⊗ K when K is the cohomology of a product of Eilenberg-
MacLane spaces as stated. It suffices to show this in the case of one single
Eilenberg-MacLane space.

The claim is trivial for K = H ∗BFp. Let K = H∗BnFp where n ≥ 2. We
can then cancel the first line in the list above. By Lemma 8.5 we have that K
is the free Frobenius algebra on the vector space V with basis P Iιn where I is
admissible, e(I) ≤ n− 2 and ε1 = 0.

If |I | + n is odd we must look closer at βP (|I|+n−1)/2βP I ιn. Write I
as I = (0, s, I ′). We have e(I) = 2s − |I ′| ≤ n − 2 which implies that
(0, (|I | + n − 1)/2, 1, s, I ′) is admissible. Its excess equals n − 2 and we see
that P (|I|+n−1)/2βP I ιn is a basis element in V even.
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If |I |+ n is even we must look at βP (|I|+n−2)/2P Iιn. As in the odd case we
see that P (|I|+n−2)/2P Iιn is a basis element in V even. However there is no β
between the first two P -operations from the left.

By the above list of the lowest terms and the description of K as a free
Frobenius algebra we now see that the generators are mapped to algebraically
independent elements. Especially they are free generators.

Lemma 9.2. Let a1, . . . , ap ∈ K be elements of odd degree and define the fol-
lowing element in Iδ:

∆(a1, . . . , ap) =

p∑

i=2

δ(a1ai)δ(a2) . . . δ̂(ai) . . . δ(ap).

where the hat means that the factor is left out. Then for any permutation τ ∈ Σp

one has ∆(a1, . . . , ap) = ∆(aτ(1), . . . , aτ(p)). Further the element is mapped as
follows by the de Rham map:

DR(∆(a1, . . . , ap)) =

p∑

i=1

aida1 . . . d̂ai . . . dap.

Proof. We first show the invariance under permutation. Since the degree of
δ(ai) is even it suffices to show that ∆(a1, a2, . . . , ap) = ∆(a2, . . . , ap, a1). We
prove the following more general statement for n ≥ 3:

n∑

i=2

δ(a1ai)δ(a2) . . . δ̂(ai) . . . δ(an) =

n∑

j=3

δ(a2aj)δ(a1)δ(a3) . . . δ̂(aj) . . . δ(an)− (n− 1)δ(a2a1)δ(a3) . . . δ(an).

The proof is by induction on n. For n = 3 we have

δ(a1a2)δ(a3) + δ(a1a3)δ(a2) = δ(a1a2)δ(a3)− δ(a3a1)δ(a2)

= 2δ(a1a2)δ(a3) + δ(a2a3)δ(a1)

= −2δ(a2a1)δ(a3) + δ(a2a3)δ(a1)

where we used (17) at the second equality sign. Assume that the formula holds
for n− 1. Then we have

n∑

i=2

δ(a1ai)δ(a2) . . . δ̂(ai) . . . δ(an) =

( n−1∑

i=2

δ(a1ai)δ(a2) . . . δ̂(ai) . . . δ(an−1)
)
δ(an) + δ(a1an)δ(a2) . . . δ(an−1) =

( n−1∑

j=3

δ(a2aj)δ(a1)δ(a3) . . . δ̂(aj) . . . δ(an−1)
)
δ(an)

− (n− 2)δ(a2a1)δ(a3) . . . δ(an−1)δ(an) + δ(a1an)δ(a2) . . . δ(an−1).

We have that δ(a1an)δ(a2) + δ(a2a1)δ(an) = δ(a2an)δ(a1) by relation (17) such
that the sum of the last two terms above equals

−(n− 1)δ(a2a1)δ(a3) . . . δ(an) + δ(a2an)δ(a1) . . . δ(an−1)
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so we recover the formula for n.
We use that d(a1ai) = aida1 − a1dai to compute the image under the de

Rham map:

DR(∆(a1, . . . , ap)) =

p∑

i=2

d(a1ai)da2 . . . d̂ai . . . dap

=

p∑

i=2

aida1 . . . d̂ai . . . dap − (p− 1)a1da2 . . . dap

which modulo p gives the stated result.

Definition 9.3. For any non negative integer n we let B(n) denote the follow-
ing set:

B(n) = {(β1, . . . , βp) ∈ Zp|∀i : βi ≥ 0, β1 + · · ·+ βp = n, ∃i, j : βi 6= βj}.

The cyclic group on p elements Cp act on B(n) by cyclic permutation of coor-
dinates. For x ∈ K we define the following elements in Iδ:

Dn
0 (x) =− σ(x)

∑
∆(P β1(x), Pβ2(x), . . . , Pβp(x)),

Dn
1 (x) =σ̂(x)

∑
δ(P β1(x)Pβ2(x) . . . Pβp(x))

where both sums are taken over β ∈ B(n)/Cp. Note that D0(x) is well defined
by Lemma 9.2

Lemma 9.4. For any x ∈ K the following formulas hold in ω(K):

P i ◦DR(φ(x)) = DR(φ(P i/px) +Di
0(x)), (28)

P i ◦DR(q(x)) = DR(q(P i/px) +Di
1(x)) (29)

where by convention P t = 0 when t is a rational number which is not a non
negative integer.

Proof. We first prove (28). Recall that DR(φ(x)) = xp + λx − x(dx)p−1 . We
have P iλx = λP i/px by Lemma 13.1 and also P i(xp) = (P i/px)p so it suffices
to prove the following for |x| odd:

P i(x(dx)p−1) = (P i/px)(dP i/px)p−1 −DR(Di
0(x)).

By the Cartan formula we have

P i(x(dx)p−1) =
∑

P β1(x)dPβ2(x) . . . dPβp(x)

where we sum over the tuples (β1, . . . , βp) with
∑
βj = i. The cyclic group Cp

acts on the set of such tuples and an orbit has length 1 or p. Arranging the
terms according to this the result follows by the definition of D i

0(x) and Lemma
9.2.

For the proof of (29) recall that DR(q(x)) = xp−1dx + βλx. We have
P i(βλx) = βλ(P i/px) + (βP (i−1)/px)p by Lemma 13.1 so when |x| is odd we
are done. For |x| even we must show that

P i(xp−1dx) = (P i/px)p−1dP i/px+DR(Di
1(x)).

This follows by the Cartan formula and a similar argument on orbits as the
above.
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Theorem 9.5. For any K ∈ K0 there is an A-module structure on `(K) such
that ` becomes a functor ` : K0 → K. The explicit formulas for the action are
as follows where x ∈ K, n = [|x|/2] and i ≥ 0. Firstly, the action on φ(x) is
given by:

P iφ(x) =Di
0(x) +

∑

t

(
(p− 1)(n− t)

i− pt

)
u(p−1)(i−pt)φ(P tx),

βφ(x) =uσ̂(x)(q(x) − δ(x)p−2δ(xβx)).

Secondly, the action on q(x) is given by:

P iq(x) =Di
1(x) +

∑

t

(
(p− 1)(n− t) + σ(x)

i− pt

)
u(p−1)(i−pt)q(P tx)

−(−1)σ(x)
∑

t

(
(p− 1)(n− t)− 1 + σ(x)

i− pt− 1

)
u(p−1)(i−pt)−1+(2−p)σ(x)φ(βP tx),

βq(x) =− δ(xp−1βx).

Thirdly, the actions on δ(x) and u are as follows:

P iδ(x) = δ(P ix), βδ(x) = −δ(βx), P 1u = up, βu = 0.

The maps DR and St becomes A-linear such that we have a commutative dia-
gram in K:

`(K)
St

−−−−→ R(K)

DR

y p1

y

ker(d)
p2

−−−−→ K

If K = H∗(
∏
BniFp) where (ni) is a (possible finite) sequence of positive inte-

gers satisfying that the set {i|ni = N} is finite for each N , then the diagram is
a pullback square.

Proof. We first prove that we have a pullback when K is a product of Eilenberg-
MacLane spaces as stated. By Proposition 7.8 and Theorem 8.6 the map Φ is an
isomorphism. So by Theorem 7.7 the kernel of DR is the ideal (u) ⊆ `(K). The
kernel of p1 is the ideal (u⊗1) ⊆ R(K) and it suffices to show that the restriction
of the Steenrod map to these kernels St| : (u)→ (u⊗ 1) is an isomorphism. It
is surjective since St is surjective and St(u) = u ⊗ 1. By Proposition 9.1 we
have ker(St) = Iδ such that ker(St|) = (u) ∩ Iδ which is trivial because of the
relation δ(x)u = 0 in `(K). Hence St| is also injective.

In the Eilenberg-MacLane case the pullback defines an A-module structure
on `(K). By Theorem 5.2 and Lemma 9.4 we see that the stated formulas
describe this action. A standard argument using the fact that BnFp classifies
degree n cohomology together with naturality takes care of the statements for
general K ∈ K.

10 Homotopy orbits of S
1-spaces

In this section we list some results on homotopy orbits of S 1-spaces. They
are all similar to results for p = 2 considered in [2] and we often refer to the
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proofs given there. In the entire section Y denotes an S1-space. We write Cn

for the cyclic group of order n. We let u of degree |u| = 2 and v of degree
|v| = 1 denote algebra generators as follows: H ∗S1 = Λ(v), H∗BS1 = Fp[u]
and H∗BCpn = Λ(v)⊗ Fp[u].

Proposition 10.1. The fibration Y → ES1 ×S1 Y → BS1 has the following
Leray-Serre spectral sequence:

E∗∗2 = H∗(BS1)⊗H∗(Y )⇒ H∗
S1(Y ).

The differential in the E2-term is given by

d2 : H∗(Y )→ uH∗(Y ) ; d2(y) = ud(y)

where d is the action differential.

Proof. Similar to the proof of [2] Proposition 3.3.

Definition 10.2. Define the spaces EnY for n = 0, 1, 2, . . . ,∞ by

EnY = ES1 ×Cpn Y , n <∞

E∞Y = ES1 ×S1 Y.

For nonnegative integers n and m with m > n define the maps

qn
m : H∗EmY → H∗EnY , τm

n : H∗EnY → H∗EmY

by letting qn
m be the map induced by the quotient map and τm

n be the transfer
map. Also define qn

∞ : H∗E∞Y → H∗EnY as the map induced by the quotient.

The following theorem is inspired by a result of Tom Goodwillie which can be
found in [4] p. 279. We use it to give a convenient definition of the S1-transfer.

Theorem 10.3. There is a commutative diagram as follows for any m ≥ 1.

EmY
Q

−−−−→ E∞Y

pr1

y pr1

y

BCpm

Bj
−−−−→ BS1

(30)

Here Q denotes the quotient map and j : Cpm ↪→ S1 the inclusion. The diagram
gives rise to an isomorphism.

Θ : H∗(BCpm)⊗H∗(BS1) H
∗(E∞Y ) ∼= H∗(EmY ) ; x⊗ y 7→ pr∗1(x)qm

∞(y)

The transfer map τm+1
m : H∗EmY → H∗Em+1Y is zero on elements of the

form Θ(1 ⊗ y) and the identity on elements of the form Θ(v ⊗ y). We get an
isomorphism

colimH∗EmY = vH∗E∞Y ∼= H̃∗(Σ(E∞Y )+).

Proof. Similar to the proof of [2] Theorem 4.2.
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Definition 10.4. For any non negative integer n the S 1-transfer

τ∞n : H∗EnY → H∗E∞Y

is defined as the composite

H∗EnY −−−−→ colimH∗EmY
v−1

−−−−→ H∗E∞Y

where the direct limit is over the transfer maps τm
n . Note that |τ∞n | = −1.

Definition 10.5. Let θ0 denote the S1-equivariant map

θ0 : S1 × Y0 → ES1 × Y ; (z, y) 7→ (ze, zy)

and let θn for n = 1, 2, . . . ,∞ be the maps one obtains by passing to the quo-
tients

θn : S1/Cpn × Y → EmY , m <∞

θ∞ : ∗ × Y → E∞Y.

Proposition 10.6. For non negative integers m and n with n < m the follow-
ing squares commutes.

H∗EnY
θ∗n−−−−→ H∗(S1 × Y )

qn
m

x qn
m⊗1

x

H∗EmY
θ∗m−−−−→ H∗(S1 × Y )

H∗EnY
θ∗n−−−−→ H∗(S1 × Y )

τm
n

y τm
n ⊗1

y

H∗EmY
θ∗m−−−−→ H∗(S1 × Y )

There are also commutative squares

H∗EnY
θ∗n−−−−→ H∗(S1 × Y )

qn
∞

x pr∗2

x

H∗E∞Y
θ∗∞−−−−→ H∗Y

H∗EnY
θ∗n−−−−→ H∗(S1 × Y )

τ∞n

y τ∞n

y

H∗E∞Y
θ∗∞−−−−→ H∗Y

where θ∗∞ = q0∞ is the map induced by the inclusion of the fiber, and the transfer
on the right hand side is given by 1⊗ y 7→ 0 and v ⊗ y 7→ y.

Proof. Similar to the proof of [2] Proposition 4.6.

Proposition 10.7. Frobenius reciprocity holds for any n ≥ 0:

τ∞n (qn
∞(x)y) = (−1)|x|xτ∞n (y).

Furthermore the following composition formulas hold.

τ∞0 ◦ q
0
∞ = 0 , q0∞ ◦ τ

∞
0 = d.

Proof. Similar to the proof of [2] Proposition 4.7, Proposition 4.8.

Proposition 10.8. There is always an inclusion Im(q0∞) ⊆ ker(d). If we have
equality Im(q0∞) = ker(d) then the Leray-Serre spectral sequence of the fibration
Y → ES1 ×S1 Y → BS1 collapses at the E3-term.
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Proof. By Proposition 10.7 we have d ◦ q0
∞ = q0∞ ◦ τ

∞
0 ◦ q

0
∞ = 0. The collapse

statement follows by Proposition 10.1.

Definition 10.9. Put ζp = exp(2πi/p) and define the map

f ′Y : S1 × Y → ES1 × Y p

(z, y) 7→ (ze, zy, ζpzy, ζ
2
pzy, . . . , ζ

p−1
p zy).

We let Cp act on the space to the left by ζp · (z, y) = (ζpz, y) and on the space
to the right by ζp · (e, y1, . . . , yp) = (ζpe, y2, . . . , yp, y1). Then the above map is
Cp-equivariant. Passing to the quotients we get a map

fY : S1/Cp × Y → ES1 ×Cp
Y p.

Note that this map is natural in Y with respect to Cp-equivariant maps.

Recall the followings facts on the order p cyclic construction [6], [5] and [7].
For any space X with homology of finite type there is a natural isomorphism

H∗(ES1 ×Cp
Xp) ∼= H∗(Cp;H

∗(X)⊗p)

where Cp acts onH∗(X)⊗p by cyclic permutation with the usual sign convention.
For a homogeneous element y ∈ H ∗X the Cp invariant y⊗p defines an element
1 ⊗ y⊗p in the zeroth cohomology group of Cp. Let N = 1 + ζp + ζ2

p + · · · +
ζp−1
p be the norm element in the group ring Fp[Cp]. If x1, . . . , xp ∈ H

∗X are
homogeneous elements, which are not all equal, then the invariantNx1⊗· · ·⊗xp

also defines an element 1 ⊗Nx1 ⊗ · · · ⊗ xp in the zeroth cohomology group of
Cp.

Theorem 10.10. The following formula holds where δi,j denotes the Kronecker
delta:

f∗Y (1⊗ y⊗p) = 1⊗ yp + v ⊗ yp−1dy + δp,3v ⊗ βλy.

Proof. We write Y0 for the space Y with trivial S1-action. We first prove the
theorem in the special case Y = Y0. Here the differential is zero. There is a
factorization

fY0
: S1/Cp × Y0

i×1
−−−−→ ES1/Cp × Y0

1×∆
−−−−→ ES1 ×Cp

Y p
0 .

By this and the formula for the Steenrod diagonal, [7] p. 119 & Errata, the
result follows.

Next we prove the following formula for a general S 1-space:

f∗Y (1⊗Nx1 ⊗ · · · ⊗ xp) = v ⊗ d(x1 . . . xp). (31)

There is a commutative diagram as follows:

H∗(S1/Cp × Y )
f∗Y←−−−− H∗(ES1 ×Cp

Y p)

τ1
0⊗1

x τ1
0

x

H∗(S1 × Y )
f ′∗Y←−−−− H∗(ES1 × Y p)

20



The lower horizontal map is given by

f ′∗Y (1⊗ x1 ⊗ · · · ⊗ xp) =

p∏

i=1

(1⊗ xi + v ⊗ dxi)

as seen by the factorization

f ′Y : S1 × Y
∆2−−−−→ (S1 × Y )2

pr1×∆p

−−−−−→ S1 × (S1 × Y )p

i×ηp

−−−−→ ES1 × Y p
1×1×ζp×···×ζp−1

p

−−−−−−−−−−−→ ES 1 × Y p.

The norm class is hit by the transfer and by finding the coefficient to v in the
above formula (31) follows.

Finally we prove the Theorem in the general case. Because of the degrees
f∗S1(1 ⊗ v⊗p) = 0. The two projection maps pr1 : S1 × Y0 → S1 and pr2 :
S1×Y0 → Y0 are S1-equivariant. Thus we can use naturality together with the
case Y = Y0 and the above equation to find the equations below

f∗S1×Y0
(1⊗ (1⊗ y)⊗p) = 1⊗ 1⊗ yp + δp,3v ⊗ 1⊗ βλy,

f∗S1×Y0
(1⊗ (v ⊗ 1)⊗p) = f∗S1×Y0

(1⊗ (v ⊗ dy)⊗p) = 0.

The action map η : S1 × Y0 → Y is also an S1-equivariant map, hence by
naturality we have a commutative diagram

S1/Cp × (S1 × Y0)
f

S1×Y0−−−−→ ES1 ×Cp
(S1 × Y0)

p

1×η

y 1×ηp

y

S1/Cp × Y
fY
−−−−→ ES1 ×Cp

Y p

We compute the pull back of the class 1⊗ y⊗p to the cohomology of the upper
left corner. First we find

(1× ηp)∗(1⊗ y⊗p) = 1⊗ (1⊗ y + v ⊗ dy)⊗p =

1⊗ (1⊗ y)⊗p + 1⊗ (v ⊗ dy)⊗p +

p−1∑

i=1

1⊗N(1⊗ y)⊗i ⊗ (v ⊗ dy)⊗(p−i).

By (31) we can compute f ∗S1×Y0
applied to the norm element terms. Only the

i = p− 1 term contributes.

f∗S1×Y0
(1⊗N(1⊗ y)⊗(p−1) ⊗ (v ⊗ dy)) = v ⊗ dS1×Y0

(v ⊗ yp−1dy)

= v ⊗ (dS1(v)⊗ yp−1dy + v ⊗ dY0
(yp−1dy))

= v ⊗ 1⊗ yp−1dy

Altogether we have

(1⊗ η∗) ◦ f∗Y (1⊗ y⊗p) = f∗S1×Y0
◦ (1× ηp)∗(1⊗ y⊗p)

= f∗S1×Y0
(1⊗ (1⊗ y)⊗p) + v ⊗ 1⊗ yp−1dy.

We now apply 1⊗ γ∗ on both sides (for the map γ, see the beginning of §3) and
the result follows.
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11 Construction of classes in string cohomology

from classes in ordinary cohomology

In this section X denotes a connected space.

Definition 11.1. Put ζp = exp(2πi/p) and define evaluation maps as follows:

ev0 : ΛX → X ; γ 7→ γ(1) ,

ev1 : ES1 ×Cp
ΛX → ES1 ×Cp

Xp ; [e, γ] 7→ [e, γ(1), γ(ζp), . . . , γ(ζ
p−1
p )].

Definition 11.2. The classes u, f(x), g(x), δ(x) ∈ H ∗
S1(ΛX) for x ∈ H∗X are

defined by

f(x) = τ∞1 ◦ ev
∗
1(v ⊗ x⊗p), g(x) = τ∞1 ◦ ev

∗
1(1⊗ x⊗p),

δ(x) = τ∞0 ◦ ev
∗
0(x), u = τ∞1 ◦ ev

∗
1(vu⊗ 1⊗p).

Theorem 11.3. Let i0 : X ↪→ ΛX denote the constant loop inclusion and let
i∞ be the corresponding map of S1-homotopy orbits. There is a commutative
diagram as follows

H∗(ES1 ×S1 ΛX)
i∗∞−−−−→ H∗(BS1 ×X)

q0
∞

y
y

H∗(ΛX)
i∗0−−−−→ H∗(X)

(32)

and an inclusion Im(q0∞) ⊆ ker(d : H∗(ΛX) → H∗(ΛX)). The constructed
classes are mapped as follows under i∗∞.

i∗∞(f(x)) = σ̂(x)St0(x) + σ(x)(−1)mm!umSt0(x),

i∗∞(g(x)) = σ̂(x)St1(x) + σ(x)(−1)mm!um−1St1(x),

i∗∞(δ(x)) = 0 and i∗∞(u) = u⊗ 1.

Here m = (p− 1)/2. Under q0
∞ the images of the classes are as follows.

q0∞(f(x)) = σ̂(x)e(xp),

q0∞(g(x)) = σ̂(x)e(xp−1dx) + σ(x)δp,3e(βλx),

q0∞(δ(x)) = e(dx) and q0∞(u) = 0.

Here δp,3 = 1 for p = 3 and zero otherwise.

Proof. A commutative diagram of spaces gives the diagram (32) and Proposition
10.7 gives the stated inclusion.

We check the formulas involving i∗∞. There is a commutative diagram as
follows where ∆ : X → Xp is the diagonal and i1 is the map of Cp-homotopy
orbits induced by i0.
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H∗(X)
ev∗0−−−−→ H∗(ΛX)

∆∗

x id

x

H∗(Xp) −−−−→ H∗(ΛX)

Tr1
0

y τ1
0

y

H∗(ES1 ×Cp
Xp)

ev∗1−−−−→ H∗(ES1 ×Cp
ΛX)

i∗1−−−−→ H∗(BCp ×X)

τ∞1

y τ∞1 ⊗1

y

H∗(ES1 ×S1 ΛX)
i∗∞−−−−→ H∗(BS1 ×X)

The horizontal map with no label is the induced in cohomology of the map
γ 7→ (γ(1), γ(ζp), . . . , γ(ζ

p−1
p )). A homotopy commutative square of spaces

shows that the upper square commutes and it is obvious that the other two
are commutative. We see that i∗∞(u) = u⊗ 1 as stated.

The composite ev1 ◦ i1 is the diagonal ∆1. Its induced in cohomology is the
Steenrod diagonal ∆∗

1 given by the following ([7] p. 119 & Errata):

ν(q)∆∗
1(1⊗ x

⊗p) =
∑

i

(−1)ium(q−2i) ⊗ P ix+
∑

i

(−1)ivum(q−2i)−1 ⊗ βP ix

where q = |x| and ν(q) = (m!)q(−1)m(q2+q)/2. From this formula and the lower
part of the diagram we see that

ν(q)i∗∞(f(x)) =
∑

i

(−1)ium(q−2i) ⊗ P ix = (−1)[q/2]uσ(x)mSt0(x),

ν(q)i∗∞(g(x)) =
∑

i

(−1)ium(q−2i)−1 ⊗ βP ix = (−1)[q/2]uσ(x)(m−1)St1(x).

By [7] Lemma 6.3 one has (m!)2 = (−1)m+1 mod p and from this one sees that
ν(q)−1(−1)[q/2] = 1 for q even and ν(q)−1(−1)[q/2] = (−1)mm! for q odd. Hence
we have verified the formulas for i∗∞(f(x)) and i∗∞(g(x)).

By the left part of the diagram we see that

δ(x) = τ∞1 ◦ ev
∗
1 ◦ Tr

1
0(x⊗ 1⊗ · · · ⊗ 1).

The composite ∆∗
1 ◦ Tr

1
0 is zero by [7] Lemma 4.1 so i∗∞(δ(x)) = 0.

Finally we check the formulas for q0
∞. It follows directly from Proposition

10.7 that δ(x) is mapped as stated and clearly u is mapped to zero. For the
classes f(x) and g(x) we use Proposition 10.6:

q0∞ ◦ τ
∞
1 ◦ ev

∗
1 = τ∞1 ◦ θ

∗
1 ◦ ev

∗
1 = τ∞1 ◦ (ev1 ◦ θ1)

∗.

Note that ev1 ◦ θ1 equals the composite

S1/Cp × ΛX
fΛX
−−−−→ ES1 ×Cp

(ΛX)p 1×evp
0−−−−→ ES1 ×Cp

Xp

where fΛX is the map from Definition 10.9. Thus we have

q0∞ ◦ τ
∞
1 ◦ ev

∗
1 = τ∞1 ◦ f

∗
ΛX ◦ (1× evp

0)∗.

From this and Theorem 10.10 we get the stated results.
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Proposition 11.4. The following diagram is a pullback square.

H∗(ES1 ×S1 ΛBFp)
i∗∞−−−−→ Fp[u]⊗H

∗BFp

q0
∞

y
y

ker(d)
i∗0−−−−→ H∗BFp

Proof. In the proof of Proposition 4.9 we saw that tjn : tBFp(n) → ΛBFp

was both an S1-map and a homotopy equivalence. So the induced map of
S1-homotopy orbits (tjn)∞ is a weak homotopy equivalence. The maps in
the diagram have nice descriptions in terms of this equivalence since there are
commutative diagrams as follows where Q denotes quotient maps.

tES1 ×S1 BFp(n)
(tjn)∞
−−−−−→ ES1 ×S1 ΛBFp

tQ

x Q

x

tES1 ×BFp(n)
tjn
−−−−→ ES1 × ΛBFp

tES1 ×S1 BFp(n)
(tjn)∞
−−−−−→ ES1 ×S1 ΛBFpx i∞

x

ES1 ×BFp(0)
∼=

−−−−→ BS1 ×BFp

Hence it suffices to show that the following diagram is a pullback where d(n)

denotes the differential on H∗BFp(n).

⊕H∗(ES1 ×S1 BFp(n))
pr0
−−−−→ H∗(BS1 ×BFp)

⊕Q∗

y
y

⊕ ker(d(n)) −−−−→ H∗(BFp)

We have H∗(ES1 ×S1 BFp(n)) ∼= ker(d(n)) for n 6= 0 since here the Leray-Serre

spectral sequence has E i,∗
3 = 0 for i ≥ 1. The result follows.

As indicated by Theorem 11.3 above it turns out that when |x| is odd then
both f(x) and g(x) can be written as a product of some power of u with another
class. This was not the case for p = 2 as described in [2]. We construct new
classes to get around this difficulty.

Theorem 11.5. Let x ∈ H∗X be a cohomology class of odd degree. Then there
exists classes φ(x), q(x) ∈ H∗(ES1 ×S1 ΛX) with |φ(x)| = p(|x| − 1) + 1 and
|q(x)| = p(|x| − 1) + 2 such that

i∗∞(φ(x)) = St0(x), q0∞(φ(x)) = λx − x(dx)p−1,

i∗∞(q(x)) = St1(x), q0∞(q(x)) = βλx.

Proof. It suffices to prove the theorem when X = BnFp for odd n ≥ 1. The
general case then follows by defining φ(x) = (1 ×S1 Λh)∗φ(ιn) and q(x) =
(1×S1 Λh)∗q(ιn) where |x| = n and h : X → BnFp has h∗(ιn) = x.
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For n = 1 we have St0(ι1) = 1⊗ ι1 and St1(ι1) = 1⊗ βι1 so here the result
follows from Proposition 11.4.

Assume that n = 2r+1 where r ≥ 1. By Proposition 10.1, Theorem 4.1 and
Theorem 8.6 the E3-term of the Leray-Serre spectral sequence for the fibration
ΛBnFp → ES1 ×S1 ΛBnFp → BS1 has the following form:

E3
∼= Im(d) ⊕ (Fp[u]⊗ ω̃(K))

where K = H∗BnFp. Here u has bidegree (2, 0) and an element y in Im(d)
or ω̃(K) has bidegree (0, |y|). Define s : BS1 → ES1 ×S1 ΛBnFp such that
pr1 ◦ s = id by choosing a constant loop. By s∗ we see that the vertical line
(∗, 0) survives to E∞.

Up to dimension 2rp + 2p − 1 the only nonzero vertical lines are (∗, 0),
(∗, 2rp + 1), (∗, 2rp + 2) and (∗, 2rp + 2p − 1) corresponding to the classes u,
φ(ιn), q(ιn) and q(βιn) respectively. Hence we can define φ(ιn) and q(ιn) by

q∞0 (φ(ιn)) = λιn − ιn(dιn)p−1,

q∞0 (q(ιn)) = βλιn and s∗(q(ιn)) = 0.

Since |f(ιn)| = 2rp+p and |g(ιn)| = 2rp+p−1 we see that f(ιn) = C1u
mφ(ιn)

and g(ιn) = C2u
m−1q(ιn) where C1, C2 ∈ Fp and m = (p− 1)/2 as before. By

Theorem 11.3 we conclude that

C1u
mi∗∞(φ(ιn)) = (−1)mm!umSt0(ιn),

C2u
m−1i∗∞(q(ιn)) = (−1)mm!um−1St1(ιn)

and the result follows.

Definition 11.6. For x ∈ H ∗X of even degree we define φ(x) = f(x) and
q(x) = g(x).

12 String cohomology and the functor `

In this section we prove the main result of this paper.

Theorem 12.1. Let X be a connected space which has finite dimensional mod
p homology in each degree. Then there is a morphism of unstable A-algebras

ψ : `(H∗X)→ H∗(ES1 ×S1 ΛX)

which sends φ(x), q(x), δ(x) for x ∈ H∗X and u to the constructed classes with
the same names. The morphism is natural in X. If both of the maps

e : ω(H∗X)→ H∗(ΛX) , Φ : ω̃(H∗X)→ H∗(ω(H∗X))

are isomorphisms then so is ψ. In particular, when (ni) is a sequence (possibly
finite) of positive integers such that the set {i|ni = N} is finite for each N and
X =

∏
BniFp, then ψ is an isomorphism.

Proof. Assume that both e and Φ are isomorphisms and put K = H ∗X . By
Theorem 7.7 we have that DR surjects ker(d) and from the results in Section
11 we see that Im(DR) ⊆ Im(q0

∞). Hence Im(q0∞) = ker(d). It then follows
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from Proposition 10.8 that the Leray-Serre spectral sequence associated to the
fibration ΛX → ES1 ×S1 ΛX → BS1 collapses at the E3-term:

E∞ = E3
∼= ker(d)⊕ uω̃(K)⊕ u2ω̃(K)⊕ . . . (33)

By Remark 7.4 there is a filtration of `(K) which associated graded object
is also (33). If we fix a dimension the filtration is finite and we conclude that
`(K) and H∗(ES1 ×S1 ΛX) have the same dimension in each degree. Hence it
suffices to show that the map ψ in the statement is a well defined morphism
which is surjective.

The constructed classes are algebra generators for H ∗(ES1 ×S1 ΛX) by the
collapse, and the formulas for their images under i∗∞ given in Section 11 shows
that Im(i∗∞) = R(K). Hence we have a commutative diagram as follows:

H∗(ES1 ×S1 ΛX)
i∗∞−−−−→ R(K)

q0
∞

y p1

y

ker(d)
p2

−−−−→ K

The kernel of p1 is the ideal (u ⊗ 1) and i∗∞(u) = u ⊗ 1. Since u ∈ ker(q0
∞)

and i∗∞ is surjective we conclude that the restriction i∗∞| : ker(q0∞)→ ker(p1) is
surjective. Hence we have a surjection into the pullback.

We now restrict to the case where X is a product of Eilenberg-MacLane
spaces as in the last part of the statement. Here e is an isomorphism by Propo-
sition 3.7 and Theorem 4.1 and Φ is an isomorphism by Proposition 7.8 and
Theorem 8.6.

The above surjection into the pullback together with Theorem 9.5 gives
us a surjective morphism ψ′ : H∗(ES1 ×S1 ΛX) → `(K) which is then an
isomorphism. By definition it has inverse ψ.

By the fact that BnFp classifies degree n cohomology and naturality of the
constructed classes, we can now conclude that the defining relations for `(K)
are universal for the constructed classes. Hence ψ is a well defined morphism in
general.

In the case where e and Φ are isomorphisms, the collapse ensures that ψ is
surjective and hence an isomorphism.

Corollary 12.2. Let X be a connected space and assume that H∗X is a poly-
nomial algebra on a set of even dimensional generators. Assume also that HiX
is finite for each i. Then ψ is an isomorphism.

Proof. If K is zero in odd degrees then ω(K) is the ordinary de Rham complex
Ω(K|Fp). Furthermore, ω̃(K) is the de Rham complex Ω(K̄|Fp) where K̄ is the
algebra defined by K̄np = Kn and K̄m = 0 for m 6= 0 mod p. The map Φ is the
Cartier map.

The Eilenberg-Moore spectral sequence for H ∗(ΛX) has Hochschild homol-
ogy of H∗X as its E2-term and it collapses since the algebra generators sit in
E0,∗

2 and E−1,∗
2 . By the Hochschild-Konstant-Rosenberger theorem Hochschild

homology is isomorphic to the de Rham complex and one concludes that e is an
isomorphism. The Cartier map Φ is also an isomorphism.
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Remark 12.3. Theorem 12.1 respects products in the following sense. Assume
that X and Y are connected spaces with mod p homology of finite type and that
eX , ΦX , eY , ΦY are isomorphisms. Then eX×Y and ΦX×Y are isomorphisms
and ψX×Y is an isomorphism.

13 Appendix: Unstable A-algebras

In this appendix we prove Proposition 3.4. We shall need the following result.

Lemma 13.1. For any unstable A-algebra K and x ∈ K the following equations
hold.

P iλx =

{
λ(P

i
p x) , i = 0 mod p

0 , otherwise
(34)

P iβλx =





βλ(P
i
px) , i = 0 mod p

(βP
i−1

p x)p , i = 1 mod p

0 , otherwise

(35)

Proof. We just prove (34) since the proof of (35) is similar. When |x| is even
both sides in the equation are zero. Assume that |x| is odd. By the instability
condition P iλx = 0 when 2i > p(|x| − 1) + 1. When i is divisible by p this
inequality implies 2i ≥ p(|x| − 1) + p or 2i

p ≥ |x| and since |x| is odd 2i
p > |x|.

So P i/px = 0 and the equation holds in this case. If 2i = p(|x| − 1) then
P iλx = λ2x = λ(P i/px).

Finally assume that 2i < p(|x| − 1). Then we can apply the Adem relation:

P iP
|x|−1

2 x =

[ i
p
]∑

t=0

(−1)i+t

(
(p− 1)( |x|−1

2 − t)− 1

i− pt

)
P i+ |x|−1

2
−tP tx.

The instability condition shows that P i+ |x|−1

2
−tP tx = 0 unless i ≤ pt. But the

binomial coefficient is zero when i < pt. So we get zero when i 6= 0 mod p and
the term corresponding to t = i/p when i = 0 mod p.

We now prove Proposition 3.4.

Proof. Let dK denote the graded Fp-vector space given by (dK)n = Kn+1 and
(dK)−1 = 0. We write dx for the element in dK corresponding to x in K hence
d(x + y) = dx + dy. We define an A-algebra structure on dK by P idx = dP ix
and βdx = −dβx. Let F (dK) denote the free graded commutative algebra
on the Fp-vector space dK. By the Cartan formula F (dK) is an A-algebra
and the graded symmetric product K � F (dK) is an A-algebra. By definition
ω(K) = K � F (dK)/I where I is the ideal generated by

1� d(xy)− d(x) � y − (−1)|x|x� d(y), (36)

1� (d(λx) − (dx)p), (37)

1� d(βλx). (38)
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We verify that A · I ⊆ I such that ω(K) is an A-algebra. We have

Pn(1� d(xy) − dx� y − (−1)|x|x� dy) =
∑

i+j=n

(1� d(P i(x)P j(y))− dP ix� P jy − (−1)|x|P ix� dP jy)

which is in I by (36) since the degree of P i is even. Further

β(1� d(xy)− dx� y − (−1)|x|x� dy) =

− (1� d(β(x)y) − dβx� y − (−1)|βx|βx� dy)

− (−1)|x|(1� d(xβy) − dx� βy − (−1)|x|x� dβy)

which is also in I by (36).
In any A-algebra one has P i(ap) = (P i/pa)p when i = 0 mod p and zero

otherwise, since this fact is a consequence of the Cartan formula alone. So by
Lemma 13.1 we have the following relation in F (dK) when i = 0 mod p:

P i(d(λx) − (dx)p) = d(P iλx) − (P
i
p dx)p = d(λP

i
p x)− (dP

i
px)p.

For i 6= 0 mod p we get zero. So P i applied to an element of the form (37) lies
in I . If we apply β to such an element we also land in I by (38). Finally Lemma
13.1 shows that P i(1� d(βλx)) ∈ I and trivially β(1� d(βλx)) ∈ I .

We verify that ω(K) ∈ U . We must show that P idx = 0 if 2i > |x|−1. This
holds if 2i > |x| since K ∈ U . If 2i = |x| we have P idx = dP ix = d(xp) = 0. We
must also show that βP idx = 0 when 2i+1 > |x| − 1. This holds if 2i+1 > |x|
since K ∈ U and if 2i + 1 = |x| we have βP idx = −dβP ix = −dβλx = 0.
Since the action on products are by the Cartan formula we have shown that
ω(K) ∈ U .

Finally we check that ω(K) ∈ K. The Cartan formula holds by definition.

For |x| odd we have P
|dx|
2 (dx) = dλx = (dx)p and the result follows.
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